Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matan.docx
Скачиваний:
5
Добавлен:
24.09.2019
Размер:
331.42 Кб
Скачать

21. Матрицы. Слу в матричной форме.

Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых или комплексных чисел), которая представляет собой совокупность строк и столбцов, на пересечении которых находятся её элементы. Количество строк и столбцов матрицы задают размер матрицы. Хотя исторически рассматривались, например, треугольные матрицы[1], в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.

Матрицы широко применяются в математике для компактной записи систем линейных алгебраических или дифференциальных уравнений. В этом случае, количество строк матрицы соответствует числу уравнений, а количество столбцов — количеству неизвестных. В результате решение систем линейных уравнений сводится к операциям над матрицами.

Матрицы допускают следующие алгебраические операции:

сложение матриц, имеющих один и тот же размер;

умножение матриц подходящего размера (матрицу, имеющую столбцов, можно умножить справа на матрицу, имеющую строк);

умножение матрицы на элемент основного кольца или поля (т. е. скаляр).

Матричная форма

Система линейных уравнений может быть представлена в матричной форме как:

или:

Здесь   — это матрица системы,   — столбец неизвестных, а   — столбец свободных членов. Если к матрице   приписать справа столбец свободных членов, то получившаяся матрица называется расширенной.

22. Матрица как линейный оператор

Пусть линейный оператор   действует в сепарабельном гильбертовом пространстве. Каждый элемент пространства может быть представлен в координатах в некотором ортонормированном базисе { } как  , причем из ортнонормированности базиса следует, что  . Тогда вектор   можно разложить в том же базисе с коэффициентами  , где  . Таким образом, в координатном представлении  , где   - координатное представление вектора  , а  -координатное представление вектора  , соответственно   { }-матрица оператора в данном базисе.

Таким образом, каждому линейному оператору гильбертова пространства соответствует некоторая матрица в данном базисе.

23. Умножение матриц.

Пусть даны две прямоугольные матрицы   и   размерности   и   соответственно:

Тогда матрица   размерностью   называется их произведением:

где:

Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что форма матриц согласована. В частности, умножение всегда выполнимо, если оба сомножителя — квадратные матрицы одного и того же порядка.

Следует заметить, что из существования произведения   вовсе не следует существование произведения 

24. Определители. Определители 2 и 3 –го порядков.

Определителем матрицы называется некоторая математическая функция элементов квадратной матрицы, результатом которой является число. Обозначение:  – определитель 3- го порядка (т.к. матрица размера 3 на 3) матрицы А. Замечание: В этом, якобы простом, определении определителя ( звучит как тавтология) говориться, что с элементами матрицы нужно что то сделать ( умножить, сложить, разделить и т.д.) и получится значение определителя этой матрицы. Однако не сказано. Что же все-таки надо с ними сделать.

Вычисление определителей первого порядка. Матрица размера   это просто число. Определителем такой матрицы является само это число. Пример:

Вычисление определителей второго порядка. Определитель второго порядка (матрицы размера 2 на 2) вычисляется по правилу: Запомнить просто: произведение элементов, стоящих на главной диагонали, минус произведение элементов, стоящих на побочной. Пример: .

Вычисление определителей третьего порядка. Определитель третьего порядка вычисляется по правилу: Запомнить порядок сомножителей, конечно же, очень трудно, если не знать визуального представления этого правила, которое называется правило треугольников: Здесь схематично показано, какие сомножители соседствуют в слагаемых.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]