Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матмод-ответы вер.0.91.docx
Скачиваний:
46
Добавлен:
21.09.2019
Размер:
1.23 Mб
Скачать
  1. Основные положения метода конечных разностей

Функции, которые находят в результате решения уравнений Лапласа, и Пуассона, а также диффузных и волновых уравнений, имеют непрерывный характер, причем их сложно моделировать как аналоговыми, так и цифровыми методами. Основным практическим методом решения таких ДУ является их конечно-разностная аппроксимация [1]. Последняя представляет собой замену системы с распределенными параметрами набором дискретных элементов таким образом, что характеристики первоначально заданного поля остаются неизменными. Процесс дискретизации оказывается возможным при условии, что расстояние между соседними дискретами достаточно мало.

При моделировании поля на ЭВМ использование метода конечно-разностной аппроксимации позволяет заменить ДУ в частных производных, описывающих физическую систему, большим числом связанных между собой алгебраических уравнений. Решение задачи, приведенной к этому виду, требует выполнения только основных математических операций (умножение, сложение и вычитание).

Целью решения сформулированных в предыдущем разделе задач является отыскание некоторой непрерывной функции, характеризующей протекание физического процесса. Поиск решения начинается с представления искомой функции в виде таблицы, которая задает значения функции в некоторых точках области ее определения. Предполагается, что между указанными точками области искомая функция изменяется по известному, например линейному, закону. При построении дискретной модели непрерывной величины поступают следующим образом:

  • область определения искомой функции делят на конечное число подобластей, называемых дискретами;

  • в центре каждой дискреты фиксируются точки – узлы;

  • значение в каждом узле считается неизвестной переменной, подлежащей определению;

  • в дискретах определяется среднее значение производных первого и второго порядка.

  1. Процедура построения разностной схемы

Продемонстрируем метод конечно-разностной аппроксимации на примере определения двумерной функции в заданной области . Разобьем область на дискреты ортогональной сеткой с шагом и по осям и соответственно. Пусть = = . Пронумеруем дискреты по осям, начиная от начала координат. Обозначим через - значение функции в центре дискреты с номерами и соответственно по осям OX и OY (рис.3.1).Осуществим предельный переход для разностей типа: и при измельчении шага сетки . В пределе это отношение стремится к постоянной величине, определяемой тангенсом угла наклона касательной к кривой сечения поверхности, задаваемой функцией F, в точке , то есть – к производной F в этой точке:

;

рис.3.1

Следовательно, обе разности заменяются одной и той же производной. При обратном переходе от производной к разностям производные заменяются так:

 ; 

В первом случае разность называется левой, а во втором – правой. Аналогичный переход выполним для производных по оси OY:

 ; 

Рассмотрим следующие отношения:

и

При стремлении h 0 эти отношения стремятся соответственно к значениям: и в точке и . Следовательно, при обратном переходе от вторых производных к разностям можно заменять производные так:

и

С помощью переходов (7–9) можно производить замену производных в дифференциальных уравнениях, которые превращаются в разностные, а сами разности, заменяющие производные называют конечными разностями.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]