Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mat-analiz-1-kurs.doc
Скачиваний:
6
Добавлен:
04.05.2019
Размер:
3.24 Mб
Скачать

Достаточное условие невозрастания (неубывания) функции на отрезке. Условие постоянства функции на отрезке.

Определение: Функция называется строго возрастающей на отрезке [a,b], если для любых точек , из [a,b], удовлетворяющих неравенству , имеет место неравенство .

Определение: Функция называется неубывающей на [a,b], если из того, что и следует, что .

Определение: Функция называется строго убывающей на отрезке [a,b], если из того, что и следует, что .

Определение: Функция называется невозрастающей на [a,b], если из того, что и следует, что .

Пример:

Если убывает на и на , то нельзя говорить, что убывает на .

Теорема 1: (необходимое условие возрастания (неубывания) функции в точке )

Если функция возрастает (неубывает) в точке и дифференцируема в , то .

Доказательство:

Теорема доказана.

Пример: возрастает в 0 и

Теорема 1’: (необходимое условие убывания (невозрастания) функции в точке )

Если функция убывает (невозрастает) в точке и дифференцируема в , то .

Доказательство – аналогично теореме 1.

Теорема 2: (достаточное условие возрастания)

Если функция дифференцируема в и , то возрастает в точке .

Доказательство:

возрастает.

Теорема доказана.

Замечание: Если в точке , то ни про возрастание, ни про убывание ничего сказать нельзя.

Билет 16

Достаточные условия экстремума.

Теорема 1: (первое достаточное условие существования экстремума)

Если f(x) дифференцируема в , f’ имеет разные знаки слева и справа от Xo => Xo – точка экстремума.

Доказательство:

Т.к f(x) с одной стороны возрастает, с другой убывает, т.е.

- max

- min

Теорема доказана.

Теорема 2: (второе достаточное условие существования экстремума)

Если в f( )=0, f’’( )>0 – min; f’’( )<0 – max

Доказательство:

f’( )=0, существует f’’( )=> f’ определена в U( )

f’(x) в точке возрастает(f’’( )>0)

f’(x) в точке убывает(f’’( )<0)

1) f’’( )>0 f’(x) возрастает, f’( )=0 =>

п ри x<

при x< => – точка минимума

2) Аналогично для f’’( )<0…

Билет 17

Формула Тейлора для многочленов.

Рассмотрим произвольный многочлен степени n:

(1)

Пусть a – любое фиксированное число, тогда, полагая , получим

(2)

Это выражение называют разложение многочлена по степеням . Здесь – числа, зависящие от и , – коэффициенты разложения по степеням .

Подставим в выражение (2) , получим

(3)

Найдем последовательные производные и подставим в ним

Таким образом, многочлен может быть представлен в виде

или

Последняя формула называется формулой Тейлора для многочлена по степеням . Отметим, что правая часть этого выражения фактически не зависит от .

Билет 18

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]