Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика экзамен.docx
Скачиваний:
13
Добавлен:
30.04.2019
Размер:
1.09 Mб
Скачать

17) Смешанное произведение векторов. Свойства и геометрический смысл. Компланарные векторы.

Векторы называются компланарными, если они лежат либо в одной плоскости, либо в параллельных плоскостях.

Смешанным произведением векторов а, b и с называется результат скалярного умножения векторного произведения [ab] на вектор с.

Обозначение: abc = [ab]c.

Свойства смешанного произведения.

  1. Смешанное произведение [ab]c равно объему параллелепипеда, построенного на приведенных к общему началу векторах a,b,c, если они образуют правую тройку, или числу, противоположному этому объему, если abc – левая тройка. Если a,b и с компланарны, то [ab]c = 0.

Доказательство.

а) Если a,b и с компланарны, то вектор [ab] ортогонален плоскости векторов а и b, и, следовательно, [ab] c. Поэтому [ab]c = 0.

в) Если a,b,c не компланарны, [ab]c = |[ab]||c| = S·|c|cosφ, где φ – угол между с и [ab]. Тогда |c|cosφ – высота рассматриваемого параллелепипеда. Таким образом, [ab]c = V, где выбор знака зависит от величины угла между с и [ab]. Утверждение доказано.

Следствие. [ab]c = a[bc].

Действительно, обе части равенства представляют объем одного и того же переллелепипеда. Поэтому положение векторных скобок в смешанном произведении не важно, и в его обозначении скобки не ставятся : abc.

  1. Если a = {Xa, Ya, Za}, b = {Xb, Yb, Zb}, c = {Xc, Yc, Zc}, то

abc = .

Доказательство. Используя координатную запись скалярного и векторного произведения, запишем:

[ab]c = (YaZbYbZa)Xc + (XbZaXaZb)Yc + (XaYbXbYa)Zc = .

Пример 1. Найдем смешанное произведение векторов a = {-3, 2, -1}, b = {2, 1, 0}, c = {-1, 3, -1}. Для этого вычислим определитель, составленный из их коодинат:

следовательно, векторы компланарны.

18) Полярная система координат

Кроме прямоугольной или декартовой системы координат часто используется полярная система координат. Возьмем на плоскости направленную прямую Ох и на ней точку О (рис. 15).

Положение точки М на этой плоскости определяется двумя числами: ее расстоянием r от взятой нами точки О и углом φ, образуемым отрезком ОМ с положительным направлением прямой Ох.

Отсчет углов обычно ведется в направлении, противоположном движению часовой стрелки.

Числа r и φ называются полярными координатами точки М, причем r называется радиус-вектором, φ - полярным углом.

Прямая Ох называется полярной осью, а точка О - полюсом полярной системы координат.

Заметим, что r (как расстояние) - всегда величина положительная, а угол φ может изменяться от 0 до 2π и далее до бесконечности.

Координатные линии полярной системы суть концентрические окружности с центром в точке О (r =const) и лучи, выходящие из точки О ( φ =const ).

Из рис. 16 видно, что если полюс полярной системы совпадает с началом прямоугольной системы координат, а полярная ось - с осью абсцисс, то прямоугольные координаты точки М выражаются через ее полярные координаты следующим образом:

Полярные координаты точки М выражаются через ее декартовы координаты такими формулами:

Определяя величину φ из (52) и имея в виду, что r > 0, видим, что знак должен быть одинаков со знаком y, а знак - со знаком х.

Отсюда по знаку sin φ и cos φ легко установить четверть, в которой лежит искомый угол.

Пример 1. Написать уравнение прямой x = 3 в полярной системе координат.

Пример 2. Построить кривую, зная, что полярные координаты ее точек удовлетворяют уравнению r = a(1 + cos φ ), (a > 0). Эта кривая называется кардиоида.

Решение. Чтобы начертить эту кривую, нужно давать φ последовательно значения от φ = 0 до φ = π (с некоторым шагом) и определять по ее уравнению соответствующие значения r. Каждой из полученных пар чисел (r, φ ) соответствует в плоскости полярной системы координат единственная точка. Построив и соединив их плавной линией, получим кардиоиду (рис. 17).