Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры ДУ.docx
Скачиваний:
17
Добавлен:
16.04.2019
Размер:
1.05 Mб
Скачать

10.Корректно поставленные задачи. Корректность задачи Коши для уравнения колебаний струны. Пример Адамара некорректно поставленной задачи Коши.

Учитывая общую постановку з.Коши, сформулируем з.Коши для ур-ия второго порядка с двумя независимыми переменными, т.е в пр-ве R2:

L(u) +b в D, (1)

(2)

где D-плоская область в R2; Г-линия внутри области D, Г С2;

Для строгой матем.постановки задачи Коши необходимо ввести след.прост-ва ф-ий: V1(Г)-прос-ва начальных ф-ий ; V(D)-прос-во ф-ий u, в котором отыскивается решение задачи Коши. Для классических решений V(D) C2(D).

Опр. З.Коши поставлена корректно в прос-вах V1, V2, V, если выполнены три условия корректности: 1)для любых нач.ф-ий сущ.решение задачи u ; 2) для любых нач.ф-ий решение единственно в прост-ве V; 3) решение задачи u непрерывно зависит от начальных ф-ий .

Если не выполнено хотя бы одно из условий корректности, то задача называется некорректно поставленной. Если же не выполнено третье условие корректности, то задача Коши наз-ся неустойчивой по нач.данным.

Процедура построения решения задачи Коши для ур.колебания струны показывает, что любое классическое решение з.Коши для ур.колебания струны представимо формулой Даламбера ( + . Отсюда следует существование и единственность решения задачи в прос-ве V.

Пример Адамара.

На плоскости R2 рассмотрим эллиптическое ур-ие Лапласа, для которого поставим з.Коши с нач.усл. на линии Г(у=0): в области D= , (3)

(4). Ур-ие (3) явл-ся ур-ем типа Ковалевской, поэтому в случае аналитических ф-ий на основании теоремы Ковалевской заключаем, что задача (3),(4) имеет единтств. аналитическое решение в некоторой достаточно малой окрестности линии Г. Т.о, первые два условия корректности выполнены. Исследуем третье условие корректности, т.е условие о непрерывной зависимости от начальных ф-ий. Для этого рассмотрим две задачи Коши с различными нач.усл. специального вида:

, (5)

где n-фиксированный положит.параметр.

Решения данных задач определяются выражениями u1=0, u2= Введем прост-ва ф-ий V1=V2=C0A(R1), V= C0A(D), где C0A- прос-во ограниченных аналитических ф-ий.

(u1,u2)= < (6)

Очевидно, что нер-во (6) не выполнено при дост. Больших значениях пар-ра n, т.к. Т.о., з.Коши для эллиптического ур-ия (3), (4) поставлена некорректно, т.к. не выполнено третье условие корректности из определения.

11. Метод интегральных преобразований для решения задачи Коши для параболических уравнений.

Рассм. з.Коши для однор. параб. ур-ия с пост.коэф.: + (1)

(2). с нач.усл.(2), где ф-ия -ограничена и непрерывна на . Решим з.Коши методом интегральных преобр.. Применим преобр. Фурье по аргументу х: U(t)=F[u]. Формально изображение U зависит не только от аргумента t, но и переменной . Однако эту переменную будем считать пар-ром и не вкл.ее в число аргументов ф-ии U. Используя св-ва преобр. Фурье:

F[ ]=

F[ ]=

-образ ф-ии . Тогда преобразованная задача примет вид: =( )U, U(0)= . Получим з.Коши для обыкн. ДУ с разделяющимися перем. U(t)= -решение ДУ. Возвращаясь к з.Коши (1),(2) получим: u(t,x)=

G(x,y,t)= (3)

Непосредственно вычисляя интеграл, получим:

=

u(t,x)= (4)

ф-ия G, введенная по правилу(3) наз-ся фундамент. решением ур-ия (1). С помощью него, решение з.Коши записывается в виде(4). Аналогично происходит применение интегральных преобразований к другим задачам мат.физики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]