Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.В. Явойский Научные основы современных сталеп....doc
Скачиваний:
44
Добавлен:
31.10.2018
Размер:
12.7 Mб
Скачать

2.13 Современные представления о ходе процессов окислительного рафинирования расплавов на основе железа

1. С помощью плавки металла во взвешенном состоянии, метода падающей в окислительной атмосфере капли, плавки в индукционных печах и печах сопротивления были изучены процессы рафинирования синтетических сплавов и чугунов в условиях по возможности близких к реакционной зоне сталеплавильных агрегатов.

2. Экспериментально установлено, что, когда концентрации [C], [Mn], [Si], [P] относительно велики (больше 0,1-0,3 %) окисление этих элементов происходит преимущественно на границе раздела фаз металл-газ. В этот период ведущим звеном, определяющим скорость процесса окисления, является массоперенос кислорода в объеме газовой фазы к поверхности металла.

3). В этих условиях протекают следующие реакции:

  1. [C]+1/2O2 газ=COгаз;

  2. СОгаз+1/2О2 газ =СО2 газ;

  3. [Si]+1/2O2 газ={SiO}газ;

  4. {SiO}+1/2O2 газ=(SiO2);

  5. [Mn]+1/2O2 газ=(MnO);

  6. Mnгаз+1/2О2 газ=(MnO);

  7. [P]+1/2O2 газ={PO}газ;

  8. 2{PO}+3/2O2 газ=(P2O5);

  9. Feж +1/2О2 газ=(FeO).

В квадратных скобках обозначены концентрации компонентов металла, в других – компонентов шлака, а в фигурных скобках первичные, в ряде случаев нестабильные продукты окисления, так или иначе зафиксированные в газах, покидающих поверхность окисляемого металла.

Реакция (2) протекает в тонком ламинарном слое, непосредственно прилегающем к поверхности расплава. Реакция (9) имеет относительно слабое развитие, определяемое концентрациями таких компонентов как С, Mn, Si и др.

4. При высоких концентрациях в расплаве этих компонентов скорость их окисления мало зависит от температуры. Энергия активации процессов окисления углерода и марганца, как чистых процессов, определяемых массопереносом кислорода составляет 44,5 ккал/моль (16,818,9 кДж/моль). При окислении кремния энергия активации несколько выше и составляет 6-8 ккал/моль (25-33,5 кДж/моль). Это свидетельствует о том, что процесс окисления кремния протекает не в чисто внешнедиффузионном режиме, а в некотором переходном между внешне- и внутридиффузионным, что объясняется образованием на поверхности металла тонкой пленки кремнеземистого шлака, создающего дополнительное сопротивление поступлению кислорода в контакт с жидким металлом.

5). В данных условиях плавки соотношение скоростей окисления отдельных компонентов металлического расплава (и последовательность удаления отдельных примесей металла) качественно определяется соотношением изменений изобарно-изотермического потенциала окисления данного компонента с учетом его концентрации в металле и концентрации его оксида в шлаке или в газовой фазе. Например, для реакции [Mn]+n/2O2=(MeOn) G=n/2lg–lg(MeOn)/[Me]. Стандартные значения  G для отдельных оксидов представлены в таблице 3.

Влияние поверхностной активности отдельных компонентов расплава на основе железа в общем случае незначительно. Оно проявляется на величине остаточных концентраций в металле элементов с сильно выраженной поверхностной активностью, или компонентов, образующих между собой трудно растворимые в расплавах железа соединения, которые образуют группировки, вытесняемые в поверхностный слой металла.

Таблица 3 – Стандартные значения изменений изобарно-изотермического потенциала окисления данного компонента

Реакция

Температура, С

G, кДж,моль

[C]+1/2O2=газ

1225

–244,6

1825

–295,5

[Si]+1/2O2=SiOгаз

1225

–231,0

1825

–250,1

[Mn]+1/2O2=(MnO)

1225

–275,0

1825

–223,0

[P]+1/2O2=POгаз

1225

–98,5

1285

–92,2