Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭС - Вопросы.doc
Скачиваний:
166
Добавлен:
30.10.2018
Размер:
27.98 Mб
Скачать

Двоичная чМн

При двоичной ЧМн (BFSK) символу 1 соответствует отрезок гармонического колебания с частотой , а символу 0 – с частотой , где - девиация частоты – изменение частоты при передаче 1 (0) относительно ее среднего значения . При ЧМн нет пассивной паузы, по этой причине ее называют манипуляцией с активной паузой.

Возможно два случая ЧМн: с разрывом фазы и без разрыва фазы (continuous-phase FSK – CPFSK).

При ЧМн с разрывом фазы назначение каждому двоичному символу своей частоты является произвольным. Полученный сигнал содержит скачки фазы.

Р

t

t

исунок 21.3 – Временные сигналов: модулирующего и ЧМн с разрывом фазы.

Наличие разрывов фазы приводит к «размытию» спектра сигнала. Это снижает помехоустойчивость приема и создает помехи другим системам связи. Поэтому при выборе частот следует обеспечить условие плавного (без скачка фазы) перехода от сигнала с частотой к сигналу с частотой :

и ,

где - число периодов внутри символьного интервала.

Рисунок 21.4 – Временные диаграммы сигналов: модулирующего и ЧМн

без разрыва фазы.

ЧМн сигнал можно рассматривать как сумму двух отдельных АМн сигналов, один из которых служит только для отображения единиц и имеет несущую частоту , а другой – только нулей и имеет несущую частоту. Соответственно, спектр ЧМн сигнала может быть представлен как суперпозиция спектров двух АМн сигналов.

Рисунок 21.5 – Спектральная диаграмма ЧМн сигнала.

Ширина спектра сигнала с двоичной ЧМн определяется выражением:

,

где - разнос частот – расстояние между частотами и . Выбирается таким, чтобы не перекрывались спектры отдельных АМн сигналов;

- девиация частоты – изменение частоты при передаче 1 (0) относительно ее среднего значения .

ЧМн применяется в радиорелейных и спутниковых системах связи, системах связи с подвижными объектами.

  1. Дискретная двоичная фазовая модуляция гармонической несущей (ФМн). Относительная дискретная двоичная фазовая модуляция гармонической несущей (ОФМ). Правила формирования ОФМ. Временные диаграммы, спектры, ширина спектра, помехоустойчивость.

    Двоичная ФМн

Различают абсолютную ФМн и относительную ФМн (ОФМн; differential PSK – DPSK).

При ФМн информация вкладывается в абсолютное значение фазы сигнала, т.е. смещение фазы модулированного сигнала относительно фазы несущего колебания. При ОФМн фазу сигнала отсчитывают от фазы предыдущего элемента сигнала.

При двоичной ФМн (BPSK) передаче 1 соответствует отрезок гармонического колебания, совпадающего по фазе с несущей, а передаче 0 - отличающегося по фазе на 180°, т.е. фаза меняется на 180° при каждом переходе от 1 к 0 и наоборот.

Р

t

исунок 21.6 – Временная диаграмма модулирующего и ФМн сигналов.

ФМн сигнал можно представить в виде суммы двух АМн сигналов, для получения первого из которых используется несущая , а второго - . Спектр амплитуд ФМн сигнала содержит те же составляющие, что и спектр АМн сигнала, кроме составляющей с частотой несущей (она исчезает, когда символы 1 и 0 появляются с равной вероятностью). Амплитуды боковых составляющих примерно в два раза больше. При передаче реальных кодовых слов амплитуда составляющей с частотой несущей не равна нулю, но будет значительно ослаблена.

Рисунок 21.6 – Спектр ФМн сигнала.

При ОФМн символ 0 передается отрезком гармонического колебания с начальной фазой предшествующего элемента сигнала, а символ 1 – таким же отрезком с начальной фазой, отличающейся от начальной фазы предшествующего элемента на 180° (фаза изменяется при передаче символов 1), или наоборот (фаза изменяется при передаче символов 0). При ОФМн передача начинается с посылки одного не несущего информации элемента, который служит опорным сигналом для сравнения фазы последующего элемента.

Рисунок 21.7 – Временная диаграмма модулирующего и ОФМн сигнала.

Спектр ОФМн сигнала подобен спектру ФМн сигнала.

ФМн сигнал имеет такую же полосу частот, как АМн сигнал:

.

ФМн была разработана в начале развития программы исследования дальнего космоса и сейчас широко используется в коммерческих и военных системах связи.