Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диплом.docx
Скачиваний:
241
Добавлен:
23.03.2016
Размер:
2.58 Mб
Скачать
  1. Проектно-конструкторская часть

    1. Технические характеристики разработанного лазерного сканирующего дальномера

Для реализации SLAMнеобходима аппаратная база. В совместной работе кафедры «Мехатроника и Робототехника» с предприятием ОАО «Восход КРЛЗ» был разработан сканирующий лазерный дальномер. Трехмерная модель сканера приведена на рисунке (Рисунок 3).

Технические характеристики:

  • Тип лазера: Импульсный;

  • Мощность лазерного излучения: 75 Вт в импульсе;

  • Угол сканирования: 900;

  • Высота плоскости сканирования относительно основания: 140 мм;

  • Количество точек в одном скане: 5000 точек;

  • Максимальное измеряемое расстояние: 31 м;

  • Погрешность измерений: до ±2% от измеряемого расстояния;

  • Напряжение питания: 12 В;

  • Ток потребления: 0.9 А;

Рисунок 3 – Трехмерная модель сканера

    1. Структурная схема сканирующего лазерного дальномера

Техническое задание было сформировано предприятием ОАО «Восход КРЛЗ».

Основные положения ТЗ:

  • Дальномер должен работать на основе импульсного метода дальнометрирования;

  • Отказ от использования дорогостоящих ПЛИС схем;

  • В качестве лазерного диода использовать SPL_PL90_3 фирмы изготовителя OSRAM;

  • По возможности использовать компонентную базу производимую предприятием заказчиком

Во ходе работы была разработана структурная схема сканирующего лазерного дальномера (Рисунок 4).

Рисунок 4 – Структурная схема дальномера

Во избежание передачи электромагнитных помех от схемы запуска лазера в фотоприёмное устройство, и повышения точности измерений, было решено разделить питание лазерного излучателя от питания остальной схемы [9].

Разработка сканирующего лазерного дальномера разделилась на этапы:

  1. Разработка электронных схем

  • Разработка фотоприёмного устройства;

  • Разработка лазерного излучателя;

  • Разработка генератора стартового импульса;

  • Разработка вычислительного блока;

  • Разработка блока питания;

  1. Разработка механики лазерного сканирующего дальномера

    1. Разработка электронных схем

      1. Разработка фотоприёмного устройства

Для того чтобы принять отраженный от объекта сигнал необходимо фотоприёмное устройство (ФПУ). Оно включает в себя линзу, оптический фильтр, корпус, фотодиод, схему усиления сигнала (Рисунок 5), и компаратор. Максимальная дальность сканирования в первую очередь зависит от ФПУ и уже потом от мощности лазера [10].

Рисунок 5 – Первый каскад усилителя

В схеме используется фотодиод КОФ137В производства КРЛЗ «Восход», он имеет следующие характеристики:

    • Чувствительность: 0,75 А/Вт;

    • Темновой ток: 10 нА;

Чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему.

В физикеиэлектроникетемновым током называют малыйэлектрический ток, который протекает пофотодиоду, в отсутствии падающихфотонов. Физической причиной существования темнового тока являются случайные генерацииэлектроновидыроквp-n слоеустройства, которые затем начинают упорядоченно двигаться за счет сильногоэлектрического поля. Темновой ток — один из главных источников шума [11].

Усилитель представляет собой 3 каскада выполненных на ОУ ADA4817-1, технические характеристики которого приведены в [12]. Первый каскад является преобразователем ток-напряжение с коэффициентом усиления 2400. Второй и третий каскады – это одинаковые усилители с коэффициентом усиления 10 (Рисунок 6).

Рисунок 6 – Второй и третий каскады усиления

Одним из важнейших расчетов фотоприёмного устройства является энергетический расчет.

У любого фотоприёмника, помимо темнового тока фотодиода, есть шумовой ток, зависящий от полосы пропускания, который рассчитывается по формуле:

(6)

Исходя из формулы (6) шумовой ток прямо пропорционален корню квадратному из полосы пропускания фотоприёмника.

Для нахождения шумового тока рассчитаем полосу пропускания фотоприёмника. Резистор и конденсатор в обратной связи представляют собой фильтр верхних частот, а в паре с обвязочным конденсатором этот резистор образует фильтр верхних частот. Для расчета частоты среза RC-фильтров применяют формулу:

(7)

Используя формулу (7) найдем верхнюю и нижнюю границу полосы пропускания фотоприёмника:

(8)

(8)

Зная значения верхней и нижней границы можно рассчитать полосу пропускания:

(10)

Подставляя значение, полученное в (10), в формулу (6) рассчитаем величину шумового тока:

(11)

Для того чтобы определить полезный сигнал на фоне шумов, он должен быть в 5–10 раз больше чем сумма темнового тока фотодиода и шумового тока приёмника [13]. Зададимся значением полезного сигнала, величиной 3 мкА. Исходя из чувствительности фотодиода, определим мощность оптического излучения, которое должно попадать на него для генерации тока равного 3 мкА:

(12)

Фотоприёмное устройство, помимо фотодиода и схемы усиления, содержит в своём составе оптическую систему, включающую в себя линзу диаметром 30 мм и фокусным расстоянием 51 мм, и оптический фильтр, пропускающий только излучение с длинной волны 905 нм. Оптический фильтр необходим для уменьшения влияния засветки на фотодиод. Он расположен между линзой и фотодиодом, при его установке необходимо учитывать что фокусное расстояние увеличится на величину равную толщине фильтра. Это происходит потому, что свет распространяется в фильтре параллельными лучами.

Для того чтобы определить максимально возможное расстояние, на котором полезный сигнал будет различим на фоне шумов, проведем энергетический расчет. Лазерный луч, попадая на объект, отражается от него в виде полусферы, и в результате не все излучение попадает на фотоприёмник (Рисунок 7).

Рисунок 7 – Отражение лазерного луча от объекта сканирования. 1 – ФПУ; 2 – лазерный излучатель; 3 – объект сканирования.

Конус, образующийся площадью линзы фотоприёмника и расстоянием до объекта сканирования, называется зрительным углом. Он определяет ту мощность, которая непосредственно попадет на ФПУ. В этом и заключается цель энергетического расчета фотоприёмника.

(13)

– мощность лазерного излучения (для SPLPL90_3); D – диаметр линзы ФПУ (D=30 мм);r – расстояние до объекта.

Преобразовав формулу (13), выведем r:

(14)

Подставив значения в формулу (14) получим максимальное расстояние которое возможно измерить:

(15)

Значение полученное в выражении (15) является идеальным, в реальности же большинство объектов поглощают часть излучения. Для объектов, с отражательной способность 18%, максимальное расстояние будет равно:

(16)

ФПУ включает в себя компаратор, необходимый для получения логического сигнала. В схеме используется компаратор ADCMP600, технические характеристики которого приведены в [14] (Рисунок 8).

Рисунок 8 – Компаратор

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]