Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МАОС без 1 главы (офворд 2003).doc
Скачиваний:
79
Добавлен:
22.03.2016
Размер:
1.99 Mб
Скачать

2.11. Особенности обнаружения изменений параметров сигнала

Статистическая теория обнаружения сигналов на фоне помех была первоначально разработана для целей поиска малых сигналов в радиолокации, а впоследствии полученные результаты были распространены на задачи гидролокации, эхо-импульсной дефектоскопии и т. д. Во всех этих областях имеется сходство в формулировке задачи: с некоторой вероятностью, зачастую априорно неизвестной, появляется полезный сигнал, который и нужно обнаружить на фоне различного рода помех. Основные идеи теории обнаружения могут быть распространены и на задачи просвечивания: теневой метод дефектоскопии, медицинского рентгеновского просвечивания и т. п. Особенностью методов просвечивания является то, что сигнал имеется и в отсутствие интересующих нас объектов в контролируемой среде. Наличие выявляемого объекта изменяет те или иные параметры сигнала (чаще всего амплитуду и время прихода) ([10], [11]). Параметры эти могут изменяться и под влиянием каких-то мешающих воздействий. При этом необходимо выявить только те изменения информативного параметра, которые вызваны наличием объекта. Этот подход может быть распространен и на все ситуации, когда сигнал, приходящий на фоне помех, присутствует постоянно, и нам необходимо обнаруживать изменения тех или иных его параметров, вызванные какими-то внешними воздействиями.

Рассмотрим задачу более подробно на примере теневого амплитудного дефектоскопа. Наличие дефекта в контролируемом изделии приводит к изменению амплитуды принимаемого сигнала. В ультразвуковых дефектоскопах амплитуда принимаемого сигнала на дефектных участках практически всегда уменьшается, в радиационных дефектоскопах дефект может как увеличивать уровень принимаемого сигнала (дефект – включения из материалов более легких, чем материал изделия), так и уменьшать его (дефект – включения из материалов более тяжелых, чем материал изделия).

Рис. 2.13

Пусть металлическое изделие 4, погруженное в жидкость 3 (рис. 2.13), контролируется теневым ультразвуковым дефектоскопом. Из-за небольших изменений затухания ультразвуковых колебаний в материале изделия, рассеяния их на неровностях поверхностей изделия и ослабления из-за остаточных загрязнений и ряда других причин амплитуда прошедшего ультразвукового сигнала при перемещении излучающего 1 и приемного 2 преобразователей вдоль поверхности изделия все время флуктуирует. Закон распределения амплитуд U прошедших сигналов на бездефектном участке изделия может быть описан плотностью распределения вероятностей p(U). Наличие протяженного звукопрозрачного дефекта 5 с акустической прозрачностью (T < 1) соответственно изменит в T раз амплитуды всех сигналов на этом участке. Плотность распределения вероятностей амплитуд преобразуется в pT(U), как показано на рис. 2.14.

При этом вид закона распределения останется прежним, а математическое ожидание и среднеквадратическое отклонение изменятся в T раз.

При контроле амплитуда прошедшего сигнала сравнивается с порогом U0 . Если она меньше порога, принимается решение о наличии дефекта, если больше – о его отсутствии. Таким образом, порядок принятия решения здесь обратен тому, который был описан ранее.

Рис. 2.14

При этом условные вероятности равны:

– ложная тревога, (2.24)

– пропуск цели, (2.25)

– правильное обнаружение. (2.26)

Если известен закон распределения, то из формул (2.24)–(2.26) можно получить конкретные соотношения, позволяющие связать значения рабочего порога с характеристиками флуктуаций и надежностью контроля. Некоторые результаты расчетов изложены в [12].

Если по условиям задачи отслеживаемое изменение параметра исследуемого объекта или явления вызывает не уменьшение, а увеличение амплитуды сигнала, то пределы интегрирования в формулах (2.24)–(2.26) соответственно изменятся.