Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2_Osnovy_Stroenia_I_Reaktsionnoy_Sposobnosti_Ug_1.doc
Скачиваний:
310
Добавлен:
18.03.2016
Размер:
7.01 Mб
Скачать
  1. Диазосоединения: реакции без выделения азота; реакция азосочетания, ее механизм, диазо– и азосоставляющие; использование реакции азосочетания для идентификации фенолов и ароматических аминов.

Ароматические диазосоединения.

Реакции солей арилдиазония без выделения азота.

Азосочетание. В результате реакции азосочетания солей арилдиазония с ароматическими аминами или фенолами образуются азосоединения. Реакция протекает по механизму электрофильного замещения, электрофилом здесь яв­ляется диазокатион. Из-за большого объема диазокатиона реакция азосочета­ния главным образом проходит в пара-положение, а если оно занято, то диазо­катион атакует орто-положение. Соль диазония (электрофильный реагент) в этой реакции называется диазокомпонентой, а фенол или амин (ароматиче­ский субстрат) — азокомпонентой:

Образующиеся в результате реакций азосочетания вещества окрашены; многие из них используются как красители и кислотно-основные индикаторы.

Азосочетание с фенолами проводят в слабощелочной среде (pH 8—10). При этих значениях pH фенол превращается в феноксид-ион, анионный центр которого проявляет положительные мезомерный и индуктивный эф­фекты и является одним из самых сильных электронодоноров и соответствен­но активаторов бензольного кольца по отношению к электрофильной атаке. Указанный интервал значений pH оптимален. При более низкой щелочности раствора концентрация ионизированных молекул будет небольшой, что при­ведет к снижению скорости реакции, в то же время при более высоких значе­ниях pH соль арилдиазония превращается в диазогидроксид, который уже не проявляет свойств электрофильной частицы и, следовательно, не будет всту­пать в реакцию азосочетания. В качестве примера сочетания в щелочной среде приведено взаимодействие диазотированной сульфаниловой кислоты с β-нафтолом, приводящее к образованию красителя кислотного оранжевого:

Азосочетание с ароматическими аминами проводят в более широком ин­тервале значений pH (4—10). Амин в реакцию азосочетания вступает только в непротонированной форме:

В слабокислой среде амин находится в равновесии со своей протонированной формой, при этом концентрация свободного основания достаточно высока, что обеспечивает протекание реакции азосочетания:

В сильнокислой среде амин полностью протонирован, образовавшаяся аммониевая группа является сильным электроноакцептором и дезактивирует ароматическое кольцо по отношению к реакции азосочетания. Азосочетание в нейтральной и слабощелочной средах проводят с теми аминами, которые при этих условиях хорошо растворимы в воде.

С некоторыми аминами азосочетание проводят в присутствии поверхно­стно-активных веществ, чтобы эмульгировать нерастворимый в воде амин. Так, дифениламин — очень слабое нерастворимое в воде основание, по­этому азосочетание с ним по одной из методик проводят в присутствии эмуль­гатора (зеленого мыла):

В процессе азосочетания может происходить электрофильное замещение сульфо- и карбоксильной групп, например:

  1. Азосоединения: азокрасители (метиловый оранжевый), индикаторные свойства; основы теории цветности.

Азсоединениями (диазенами) называются соединения, содержащие азо-группу —N=N—, связанную с двумя углеводородными радикалами. В зависимости от строения углеводородного радикала азосоединения мо­гут быть алифатическими, ароматическими и смешанными.

Атомы азота в азогруппе находятся в sp2-гибридном состоянии с располо­жением неподеленных пар электронов на гибридных орбиталях. Азосоедине­ния способны существовать в виде π-диастереомеров, из них термодинамиче­ски более устойчив E-изомер. При облучении его УФ-светом он превращается в Z-изомер, который при нагревании снова переходит в более устойчивую E-форму

Индикаторные свойства.

Еще более ста лет назад окраску веществ связывали с наличием в их струк­туре так называемых хромофорных групп, к которым относятся некоторые не­насыщенные группировки, например, двойные связи С=С, С=O, C=N, N=N, N=O, ароматические фрагменты.

Изолированные хромофоры имеют полосы поглощения в электронном спектре в дальней ультрафиолетовой области (165—200 нм) и являются прозрачными в видимой области спектра. Сопряжение одного хромофора с другим вызывает сдвиг полос поглощения в сторону больших длин волн с одновре­менным увеличением их интенсивности. Окрашенные вещества поглощают в видимой области спектра (400—800 нм). Очевидно, что такие соединения должны иметь в своей структуре длинную цепь сопряжения. Типичным при­мером окрашенных веществ служат азосоединения, характеризующиеся нали­чием в структуре в качестве главного хромофора фрагмента азобензола. Со­пряженная система азобензола включает два бензольных кольца и азогруппу:

Различные азосоединения в зависимости от длины сопряженной системы могут быть окрашены в желтый, оранжевый, красный, синий и зеленый цвета. Изменению и углублению окраски способствует наличие в структуре ауксохромов — атомов или групп атомов, вступающих в р,π- и π,π-сопряжение с π-электронной системой главного хромофора. Наиболее интенсивную окра­ску имеют те соединения, в которых с главным хромофором сопряжены одно­временно электронодонорные и электроноакцепторные группы, находящиеся в пара- или орто-положении по отношению друг к другу. Примерами таких со­единений могут служить метиловый оранжевый (гелиантин), имеющий электронодонорную диметиламиногруппу, и электроноакцепторную сульфогруппу, а также метиловый красный, конго красный и др.

Многие ароматические азосоединения при действии кислот и оснований изменяют свою окраску в определенном интервале pH среды, благодаря чему используются в аналитической химии как индикаторы. При изменении pH происходит протонирование или депротонирование молекулы индикатора, что влечет за собой перераспределение электронной плотности в сопряженной системе.

Например, индикатор метиловый оранжевый в нейтральной и ще­лочной средах окрашен в желтый цвет. В кислой среде вследствие протониро­вания одного из атомов азота происходит изменение в распределении элек­тронной плотности в сопряженной системе молекулы, являющееся причиной изменения желтой окраски на красную.

Протонированная форма молекулы метилового оранжевого может быть описана двумя мезомерными структура­ми, одна из которых хиноидная. Полагают, что изменение окраски в основном обусловлено вкладом хиноидной структуры (выделена цветом):

Имеется большое число кислотно-основных индикаторов, относящихся к разным классам окрашенных веществ, интервалы перехода окраски которых перекрывают весь диапазон значений pH. Большую ценность представляют индикаторы с узким интервалом перехода, например нитразиновый желтый.

  1. Альдегиды и кетоны: классификация; номенклатура; химическая идентификация, спектральные характеристики. Представители: формальдегид (формалин), ацетальдегид, хлораль (хлоральгидрат), акролеин, бензальдегид, ацетон, циклогексанон, ацетофенон.

Альдегидами называются соединения, в которых карбонильная группа со­единена с углеводородным ради капом и атомом водорода, а кетонами карбонильные соединения с двумя углеводородными радикалами. В альдегидах и кетонах функциональной группой является карбонильная группа >С=O, поэтому оба класса этих родственных веществ относятся к кар­бонильным соединениям:

В зависимости от строения углеводородных радикалов альдегиды и кето­ны бывают алифатическими (насыщенными и ненасыщенными) и ароматиче­скими. Кетоны, у которых карбонильная группа соединена с одинаковыми уг­леводородными радикалами, называются симметричными.

Номенклатура. Родовое название альдегиды имеют соединения, у которых группа — СН=О присоединена к атому углерода. В названиях ациклических альдегидов группа —СНО, если она является старшей и находится в главной цепи, обозначается суффиксом -аль. Нумерация ведется в этом случае от нее, поэтому локант «1» опускается. Диальдегиды называют путем добавления суффикса -диаль к на­званию родоначальной структуры. Если группа —СНО не является старшей или находится не в главной цепи, то используют префикс формил-.

Названия циклических альдегидов, в которых группа —СНО как старшая связана с циклом, строятся добавлением суффикса -карбальдегид к названию циклической системы:

Если соответствующая альдегиду карбоновая кислота имеет тривиальное название, то из него может быть образовано и тривиальное название альдегида:

Сохраняются следующие тривиальные названия:

Родовое название кетоны имеют соединения, содержащие карбонильную группу >С=О, связанную с двумя атомами углерода (оксогруппой называется фрагмент =O). Кетоны называют, используя суффикс -он, если нет более стар­шей группы. В ее присутствии используется префикс оксо-.

Сохраняется тривиальное название «ацетон» для СН3СОСН3.

Кетоны Ar— СО—R, в которых карбонильная группа присоединена к бен­зольному или нафталиновому ядру, называют, заменяя частицу -ил в названии ацильного радикала R—СО— на суффиксы -офенон и -онафтон со­ответственно:

Дикетоны, производимые от ароматических соединений заменой двух фрагментов — СН= на группы >С=O с последующей перегруппировкой двойных связей, называют, добавляя суффикс -хинон к названию ароматиче­ского соединения (иногда это название подвергают модификации):

Низшие алифатические альдегиды и кетоны, за исключением газообраз­ного формальдегида, представляют собой подвижные жидкости. Первые представители (формальдегид, ацетальдегид, ацетон) хорошо раство­римы в воде за счет образования с ней водородных связей или гидратных форм. По мере удлинения углеродной цепи растворимость карбонильных со­единений в воде снижается. Ароматические карбонильные соединения плохо растворимы в воде.

Отдельные представители.

Формальдегид — СН2О — простейший и единственный газообразный аль­дегид, обладает резким раздражающим запахом, хорошо растворим в воде и спиртах, хуже в эфире, бензоле. В промышленности формальдегид получают паро­фазным окислением метанола, железо-молибденовые катализаторы обеспечи­вают выходы до 92%:

Формальдегид склонен к полимеризации, в зависимости от условий обра­зуется линейный олигомер (параформальдегид, или параформ) или цикличе­ские тример и тетрамер. Параформ представляет собой белый порошок, при нагревании разлагается с образованием формальдегида, поэтому используется как форма хранения и транспортировки формальдегида.

При взаимодействии формальдегида с аммиаком образуется гексаметилентетрамин (уротропин). Первоначально образующийся продукт нуклео­фильного присоединения аммиака к альдегиду в несколько стадий превраща­ется в уротропин, каркасная структура которого сходна с кристаллической ре­шеткой алмаза:

Гексаметилентетрамин используется в медицине как антисептическое средство. Основная масса производимого промышленностью формальдегида используется для производства феноло- и мочевиноформальдегидных смол. Водный 40%-й раствор формальдегида, стабилизированный до­бавкой 6—10% метанола, называется формалином (антисеп­тик).

Ацетальдегид — СН3СНО — низкокипящая жидкость с резким запахом, смешивается во всех отношениях с водой и большинством органических рас­творителей. Ацетальдегид, подобно формальдегиду, в присутствии кислот легко обра­зует циклический тример (паральдегид) и тетрамер (метальдегид):

Метальдегид используется в качестве топлива (сухой спирт).

Ацетальдегид служит сырьем для промышленного получения многих соединений алифатического ряда — уксусной кислоты, уксусного ангидрида, этилацетата, бутанола-1, хлораля.

Хлораль (трихлорацетальдегид, трихлоруксусный альдегид) — CCl3CHO — бесцветная жидкость со специфическим резким запахом, растворим в органических растворителях и нерастворим в воде. Хлораль используют в производстве инсектицидов, в частности в производстве ДДТ, хлорофоса, дихлофоса.

Хлоральгидрат (2,2,2-трихлорэтандиол-1,1, C(Сl)3С(ОН)2Н) обладает снотворным и седативным действием, использующихся при анестезии. Чаще хлоралгидрат используется при психическом возбуждении и как противосудорожное средство при спазмофилии,столбняке и т. п. Входит в состав зубных капель «Дента».

Бензальдегид — С6Н5СНО — бесцветная жидкость с запахом горького мин­даля. Пары бензальдегида обладают слезоточивым действием. Растворим в этаноле, диэтиловом эфире и других органических растворителях, практиче­ски нерастворим в воде. В природе встречается в виде гидроксинитрила C6H5CH(OH)CN (как составная часть амигдалина). Бензальдегид используют для синтеза коричной кислоты и альдегида, бензилбензоата, трифенилметановых красителей.

Акролеин (акриловый альдегид) — СН2=СНСНО — простейший ненасыщенный аль­дегид, представляющий собой бесцветную слезоточивую жидкость с резким запахом, образуется при термическом разложении жиров (кухонный чад), рас­творим в воде и органических растворителях. Акриловый альдегид легко полимеризуется и окисляется, поэтому его хра­нят в присутствии ингибиторов радикальных реакций. Применяют акриловый альдегид для синтеза акрилонитрила, глицерина, пиридина, некоторых ами­нокислот.

Ацетон — СН3СОСН3 — простейший кетон, бесцветная жидкость с харак­терным запахом, смешивается с водой и органическими растворителями. Об­разуется как продукт аномального расщепления углеводов у больных сахар­ным диабетом (ацетоновые тела). Ацетон находит широкое применение как растворитель лаков и красок, служит сырьем для синтеза уксусного ангидрида и кетена СН2=С=О.

Ацетофенон (метилфенилкетон) — C6H5COCH3 — бесцветная маслянистая жидкость, обладающая сильным запахом черёмухи. Хорошо растворяется в этаноле, диэтиловом эфире, ацетоне, хлороформе, бензоле. Ацетофенон и некоторые его производные используются как душистые вещества в парфюмерии. Кроме того, ацетофенон обладает снотворным действием. Его производное — хлорацетофенон — является слезоточивым веществом.

Циклогексанон — жидкость с раздражающим запахом (ацетон и мята), растворим в органических растворителях, ограниченно растворим в воде. Получают гидрированием фенола с последующим окислением или дегидрированием циклогексанола. Применяют для получения ɛ-капролактама и адипиновой кислоты, например:

Спектральная идентификация

ИК-спектроскопия. В ИК-спектрах альдегидов и кетонов имеется сильная полоса валентных колебаний группы С=О. У алифатических альдегидов максимум полосы поглощения находится около 1725 см-1, у кетонов 1715 см-1. Если карбонильная группа сопряжена с С = С или ароматической системой, максимум полосы поглощения смещается в низкочастотную область: у ароматических альдегидов — 1715-1695 см-1, у α,β-ненасышенных альдегидов — 1710-1685 см-1, у алкил-арилкетонов — около 1690 см-1, у диарилкетонов — около 1665 см-1, у α,β-ненасыщенных кетонов — ~1665 см-1. Для карбонильных групп хинонов характерна полоса поглощения при 1690—1660 см-1. Две полосы слабой интенсивности в области 2720-2690 и 2830-2810 см-1 соответствует валентным колебаниям связи С—Н альдегидов.

Спектроскопия ПМР. В спектрах ПМР альдегидов наиболее характеристичными являются сигналы протона альдегидной группы в интервале 9,4-10,4 м. д. (9,72 м. д. у ацетальдегида, 9,48 м. д. у акрилового альдегида, 9,96 м. д. у бензальдегида). Нахождение этого сигнала в столь слабом поле обусловлено магнитной анизотропией карбонильной группы. Внешнее магнитное поле Н0 индуцирует в π-электронной системе связи С=О циркуляцию электронов, которая в свою очередь создает области, где протоны подвергаются соответственно экранированию и дезэкранированию.

Карбонильная группа за счет индуктивного эффекта дезэкранирует протоны у α-атомов углерода альдегидов и кетонов. Сигналы метальных протонов групп, непосредственно связанных с карбонильной группой, наблюдаются в интервале от 1,9 до 2,2 м, д. (2,07 м. д. у ацетона, 1,93 м. д. у ацетальдегида). Метиленовые группы дают сигнал в более слабом поле, например, в спектре пропионового альдегида протоны метиленовой группы дают сигнал 2,40 м. д. В спектрах ПМР хинонов протоны кольца дают сигналы в области 6,7 м. д.

Электронная спектроскопия. Насыщенные и несопряженные альдеги­ды и кетоны имеют в УФ-спектре малоинтенсивную полосу поглощения 270—290 нм, обусловленную n→π*-переходом. Положение полосы n→π*-перехода зависит от растворителя; в полярных растворителях максимум поглощения смещается в коротковолновую область. Водородные связи, обра­зуемые протонными растворителями (вода, спирты) с альдегидами и кетонами, понижают энергию несвязывающих электронов карбонильного атома кис­лорода. На возбуждение таких электронов требуется большая энергия, а зна­чит, более жесткое излучение, с меньшей длиной волны. При подкислении растворов альдегидов и кетонов полоса n→π*-перехода сильно ослабевает или вообще исчезает. Интенсивная полоса поглощения, соответствующая π→π*-переходу, находится в области 180—195 нм и обычными спектрофотометрами не фиксируется.

В сопряженных карбонильных соединениях происходит смещение макси­мумов поглощения обеих полос в более длинноволновую область. В электронных спектрах хинонов наиболее важная полоса имеет макси­мум при 400—500 нм и соответствует n→π* -синглет-синглетному переходу.