Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_Spetsialnye_Razdely.doc
Скачиваний:
531
Добавлен:
18.03.2016
Размер:
5.72 Mб
Скачать
  1. Полисахариды: классификация; принцип строения на примерах декстранов, инулина, пектиновых веществ, типы гликозидной связи.

Декстраны — (С6Н10О5)n — полисахариды бактериального происхождения, построены из α,D-глюкопиранозы. Их макромолекулы сильно разветвлены. Основным типом связи является α(16), а в местах разветвлений — α(14), α(13) и реже α(12)-гликозидные связи.

Декстран имеет молекулярную массу порядка 300 000–400 000 и используется для изготовления сефадексов, применяемых в гельфильтрации. Частично гидролизованный декстран с молекулярной массой 60 000–90 000 в изотоническом растворе NаСI (0,85 %) использовался ранее в качестве плазмозамещающих растворов. В настоящее время для этой цели применяются средства, изготовленные на основе модифицированного крахмала.

Пектины. Пектинами, или пектиновыми веществами, называют расти­тельные гетерополисахариды, главным моносахаридным компонентом которых яв­ляется D-галактуроновая кислота. В основе пектинов лежит пектовая кислота, которую долгое время считали гомополисахаридом, состоящим из α(1→4)- связанных остатков D-галактуроновой кислоты, как показано ниже. В дейст­вительности в цепи содержится некоторое, иногда значительное, количество остатков L-рамнозы, которые могут иметь боковые углеводные цепи.

В пектинах содержится также пектиновая кислота, представляющая собой метиловый эфир пектовой кислоты различной степени этерификации (до 50%).

Растворимые пектины содержатся в соке растений, нерастворимые — в мякоти плодов. Практически ценным свойством пектинов является их спо­собность образовывать гели вследствие межмолекулярной ассоциации от­дельных цепей. Благодаря этому свойству пектины используются в пищевой промышленности для приготовления джемов, желе (мармелада), фруктовых консервов и т. д. В фармации они представляют интерес как вспомогательные вещества для создания детских лекарственных форм. Основное сырье для получения пектинов в промышленности — лимонная корка (до 40% пектинов), жом яблок и сахарной свеклы.

Инулин, (C6H10O5)n — органическое вещество из группы полисахаридов, полимер D-фруктозы. Имеет сладкий вкус. При гидролизе под действием кислот и фермента инулазы образует D-фруктозу и небольшое количество глюкозы. Инулин, как и промежуточные продукты его ферментативного расщепления — инулиды, не обладает восстанавливающими свойствами. Молекула инулина — цепочка из 30—35 остатков фруктозы в фуранозной форме.

  1. Полисахариды: строение целлюлозы; простые и сложные эфиры целлюлозы – ацетаты, нитраты, метил–, карбоксиметил– и диэтиламиноэтилцеллюлоза.

Целлюлоза или клетчатка представляет собой линейный гомополисахарид, состоящий из остатков β,D-глюкопиранозы, соединенных между собой β(14)-гликозидными связями.

Структурным повторяющимся фрагментом в целлюлозе является биозный фрагмент — целлобиоза. В этом фрагменте второй моносахаридный остаток β,D-глюкопиранозы повернут на 180º по отношению к предыдущему. Это позволяет целлюлозе иметь линейную структуру, дополнительно стабилизированную водородными связями. Водородные связи могут образовываться между кислородным атомом пиранозного цикла и спиртовым гидроксилом 3-го углеродного атома следующего цикла, а также между соседними цепями. Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, позволяющие целлюлозе формировать клеточную стенку растений.

Клетчатка является субстратом для бактерий желудочно-кишечного тракта, синтезирующих витамины группы В, способствует адсорбции токсических веществ в толстом кишечнике и их выведению, что снижает риск развития злокачественных новообразований толстого кишечника.

Простые эфиры.

Широкое применение находят также производные целлюлозы. Химиче­ская модификация целлюлозы сводится главным образом к ее превращению в простые и сложные эфиры. Получение простых эфиров напоминает синтез Вильямсона, в котором алкилированию подвергается так называе­мая «щелочная целлюлоза» — кристаллический комплекс целлюлозы, щело­чи и воды. Этот комплекс образуется при действии концентрированных вод­ных растворов щелочей на целлюлозу и записывается условно как алкоголят. Стехиометрический состав комплекса зависит от температуры и концентра­ции щелочи.

В реакциях алкилирования, проводимых в щелочной среде (т. е. фактиче­ски со щелочной целлюлозой), наиболее активен гидроксил при С-2, наиме­нее — при С-3. В кислой среде самым реакционноспособным является гидро­ксил при С-6 как стерически более доступный.

Метилцеллюлоза. Этот простой эфир может быть записан в виде бH7(OH)3-х(OCHз)х]n, где x — степень замещения, т. е. число метильных групп, приходящихся на одно звено. Наибольшее применение на­ходят эфиры со степенью замещения 1,5-2 и молекулярной массой до 250-300 тыс., которые могут быть изображены следующей усредненной структу­рой (для степени замещения 1,5):

Метилцеллюлоза — бесцветное аморфное вещество, растворимое в холод­ной воде, глицерине и нерастворимое в большинстве органических раствори­телей. При температуре выше 55 °С водный раствор превращается в гель, ко­торый при охлаждении разрушается. Растворы метилцеллюлозы обладают поверхностно-активными свойствами. При высыхании растворов образуются прочные пленки. Метилцеллюлоза находит широкое применение как загуститель, эмульга­тор и стабилизатор различных материалов, включая фармацевтические соста­вы. Ее используют при изготовлении суспензий, эмульсий и гидрофобных ос­нов мазей и линиментов.

Карбоксиметилцеллюлоза. От метилцеллюлозы этот простой эфир, со­кращенно обозначаемый КМЦ, отличается наличием карбоксильной группы в метильном заместителе: [С6Н7(OН)3-х(OСН2СOOН)х]n, где x = 0,1-1,5. По­лучается он действием хлороуксусной кислоты или ее натриевой соли на ще­лочную целлюлозу, например:

КМЦ не растворяется в воде, а ее натриевая соль (по карбоксильной груп­пе) хорошо растворима с образованием прозрачных вязких растворов. Натрий-КМЦ применяется в аналогичных целях, что и метилцеллюлоза. КМЦ с низкой степенью замещения (x = 0,1-0,2) нашла применение в качестве катионита благодаря способности обменивать протон карбоксиль­ной группы на другие катионы. Как ионит, обменивающий ани­оны, используется другой простой эфир — диэтиламиноэтилцеллюлоза (со­кращенно — ДЭАЭ-целлюлоза).

Сложные эфиры целлюлозы.

Среди сложных эфиров целлюлозы наибо­лее значимыми являются ацетаты6Н7(ОН)3-х(OAc)х]n и нитраты6Н7(ОН)3-х(ONО2)х]n.

Ацетаты целлюлозы были одним из первых синтетических материалов, используемых для получения искусственных волокон, например ацетатного шелка. Для этого пригодны высокозамещенные полимеры — триацетат (реальная степень замещения 2,8—2,9) и продукт его частичного гидролиза (x = 2,4—2,5), называемый вторичным ацетатом. Триацетат целлюлозы полу­чают действием избытка ацилирующего агента (обычно уксусного ангидрида в присутствии кислотного катализатора):

Ацетаты целлюлозы применяются в производстве текстильных материа­лов, кино- и фотопленок, лаков, сигаретных фильтров, различных мембран. Они находят применение и в изготовлении готовых лекарственных форм.

Нитраты целлюлозы получают действием избытка смеси концентриро­ванных азотной и серной кислот на хлопковую целлюлозу. Степень замеще­ния х в общей формуле зависит в основном от соотношения кислот и остаточ­ного количества воды в нитрующей смеси.

Продукт частичного замещения (х = 1,8-2,1), известный как коллокси­лин, используется в производстве пластмасс, целлулоида, нитроэмалей и ни­тролаков. Почти полностью замещенная целлюлоза (х = 2,8), называемая пи­роксилином, относится к взрывчатым веществам и применяется при изготов­лении бездымного пороха.

  1. Гетероциклы: классификация; основы систематической номенклатуры; электронное строение ароматических пяти–, шестичленных и конденсированных гетероциклов. Представители: пиррол, индол, имидазол, оксазол, пиримидин, пурин.

Для их классификации используют следующие признаки:

  1. По размеру цикла гетероциклические соединения чаще всего трех-, четырех-, пяти-, шести- и семичленные.

  2. По типу элемента, входящего в состав цикла, это со­единения с атомами азота, кислорода или серы.

  3. По числу гетероатомов, входящих в цикл, наиболее распространены ге­тероциклы с одним и двумя гетероатомами, но известны соединения и с че­тырьмя атомами в одном цикле.

  4. По природе и взаимному расположению нескольких гетероатомов возмож­ны разнообразные комбинации (N и S, N и О и т. д.), причем гете­роатомы могут занимать различные положения относительно друг друга.

  5. По степени насыщенности гетероциклы могут быть ароматическими, ненасыщенными и насыщенными:

Химия ароматических гетероциклов изучена наиболее подробно. Полно­стью или частично насыщенные гетероциклы в силу особенностей их химиче­ских свойств рассматриваются, как правило, не как гетероциклические со­единения, а как циклические аналоги тех или иных алифатических соедине­ний (простые эфиры, сульфиды, вторичные амины).

  1. По числу циклов различают моноциклические, полициклические (главным образом, конденсированные) системы. Число циклов и их типы мо­гут быть самыми различными.

Главную сложность в номенклатуре гетероциклических соединений пред­ставляет огромное разнообразие гетероциклических структурных типов. Для многих гетероциклов в номенклатуре ИЮПАК разрешается применять тривиальные и полутривиальные названия.

Правила ИЮПАК не регламентируют положение гетероатома при на­писании формул гетероциклов, но традиционно гетероатом (или гетероато­мы) располагают в нижней части цикла. Нумерация атомов в моноциклических соединениях всегда начинается от гетероатома. Если гетероцикл содержит различные гетероатомы (чаще всего это — азот, кислород и сера), то соблюдают следующий порядок падения старшинства атомов: О > S > N. Затем нумерацию продолжают так, чтобы другой гетеро­атом получил наименьший локант. При наличии в молекуле неравноценных атомов азота (=N— и —NH—) нумерация начинается от более насыщенного.

В систематической номенклатуре моноциклических соединений, содер­жащих один или несколько гетероатомов в цикле, используется метод Ганча-Видмана. Согласно этому методу, название гетероцикла образуют путем со­четания соответствующего префикса: окса- для атома кислорода, тиа- для атома серы, аза- для атома азота — с корнями, отражающими размер цикла (число атомов в цикле) и степень его насыщенности. Для удобства произношения буква «а» в префиксах часто опускается, поскольку корень на­чинается обычно с гласной буквы.

В приведенном выше названии азепина символ «Н» («обозначенный водо­род») применяется для уточнения положения двойных связей в системах с максимальным числом некумулированных двойных связей. Локант «обозначенного водорода» показывает, что «лишний» атом водорода находится в по­ложении 2. Наличие нескольких одинаковый гетероатомов обозначается префиксами ди-, три- и т. д. Локанты гетероатомов указываются перед префиксом через дефис.

Названия одновалентный радикалов гетероциклических соединений обыгано получают путем добавления суффикса -ил к тривиалыному или сис­тематическому названию исходного соединения.

Номенклатура конденсированных гетероциклических систем. Тривиальные названия.

В номенклатуре ИЮПАК разрешено использование тривиальных назва­ний многих конденсированных гетероциклических систем.

Систематическая номенклатура.

В простейших случаях, когда в бициклической системе гетероцикл кон­денсируется с бензольным кольцом (что встречается довольно часто), к назва­нию гетероцикла добавляется префикс бензо- (или бенз-, если далее следует гласная буква). Когда возможны различные способы сочленения колец, циф­рами перед объединенным названием указывают положение гетероатомов по отношению к бензольному кольцу. Локанты гетероатомов должны быть при этом наименьшими.

В общем случае для составления названия конденсированных систем не­обходимо указывать компоненты системы и места сочленения в каждом ком­поненте. Предварительно определяют, какой компонент считать основным. За основной компонент всегда принимается гетероцикл или конденси­рованная гетероциклическая система, имеющая тривиальное название.

Нумерация конденсированных систем. Поскольку существуют опреде­ленные правила нумерации конденсированных систем, то важно прежде все­го правильно сориентировать молекулу. В полициклических системах отдель­ные циклы должны изображаться с двумя вертикальными сторонами. Любую полициклическую систему ориентируют так, чтобы соблюдались следующие условия:

• наибольшее число колец находилось в горизонтальном ряду;

• остальные кольца должны находиться выше или правее горизонтально­го ряда (в верхнем правом секторе);

• при наличии гетероцикла система должна быть ориентирована так, что­бы гетероатом (или гетероатомы) получили наименьшие локанты.

Нумерацию начинают с правого (или верхнего) цикла от первого атома, не участвующего в сочленении с другими циклами, и ведут ее по часовой стрелке по периметру молекулы. Узловые атомы углерода самостоятельно не нумеру­ются, а получают номер предыдущего атома с добавлением прямых латинских букв а, Ь, с и т. д. Однако если имеются узловые гетероатомы, то они нумеру­ются очередными цифрами.

Выбор основного компонента. В случае возможности образования ряда названий конденсированной системы основной компонент (ниже в примерах выделен цветом) выбирают в следующем порядке.

  1. Компонент, содержащий азот.

  2. Компонент, содержащий иные, чем азот, гетероатомы в порядке старшинства гетероатомов.

  3. Компонент, содержащий наибольшее число циклов.

  4. Компонент, содержащий наибольший из циклов.

  5. Компонент, содержащий наибольшее число различных гетероатомов.

Шестичленные гетероциклы с одним гетероатомом. Группа пиридина.

Пиридин является наиболее ярко выраженным представителем ароматиче­ских гетероциклов. По строению он аналогичен бензолу, только вместо одного звена —СН= содержит в кольце звено —N=. Согласно методу валентных схем, он представляет собой резонансный гибрид нескольких предельных структур, основной вклад в который вносят структуры, подобные бензолу по Кекуле.

Все атомы углерода и атом азота находятся в состоянии sp2-гибридизации, и все σ-связи (С—С и С—N) лежат в одной плоскости. У атома азо­та из трех его гибридных орбиталей две образуют σ-связи с атомами углерода, а третья содержит неподеленную пару электронов. На негибридной р-орбитали, расположенной перпендикулярно плоскости σ-скелета, находится один электрон, благодаря которому атом азо­та участвует в образовании единого электронного облака с р-орбиталями пяти атомов углерода. Атом азота с такой электронной конфигураци­ей называют пиридиновым.

Таким образом, молекула пиридина отвечает критериям ароматичности, сформулированным для ароматических углеводородов, а именно имеет плоский σ-скелет, сопряженную замкнутую электронную систему, ох­ватывающую все атомы цикла и содержащую шесть π-электронов, удовлетво­ряя формуле Хюккеля (4п + 2 при п = 1). В этом отношении пиридин изоэлектронен бензолу.

В то же время имеет ряд отличий от бензола. Во-первых, его молекула не представляет собой правильный шестиугольник, так как связь С—N короче связей С—С и, как следствие, валентные углы отличаются. Во-вторых, пиридин обладает значительным дипольным моментом.

Пиридин и другие гетероциклы, содержащие атом азота пиридинового ти­па (хинолины, диазины), называют π-дефицитными, или π-недостаточными, системами. Их отнесение к π-дефицитным сделано на основе электроноак­цепторных свойств гетероатома, что приводит к дефициту электронов на ато­мах углерода. Важной особенностью π-электронного распределения в пиридине являет­ся чередование частичных зарядов в кольце: атомы С-2 и С-6 (называемые также α-положениями), а также С-4 (γ-положение) имеют частичный по­ложительный заряд, т. е. они наиболее электронодефицитны, тогда как атомы С-3 и С-5 (β-положения) заряжены слегка отрицательно.

Пятичленные гетероциклы с одним гетероатомом.

К ним относится пиррол, фуран и тиофен — представляют собой плоские пятиугольники с че­тырьмя атомами углерода и соответствующим гетероатомом — азотом, кисло­родом или серой — в состоянии sp2-гибридизации.

Пиррол, как и пиридин, содержит 2-гибридизованный атом азота, но в иной конфигурации. На негибридной р-орбитали находится па­ра электронов, а гибридные орбитали содержат по одному электрону. Две гиб­ридные орбитали образуют связи с атомами углерода, а третья участвует в образовании σ-связи с атомом водорода. Атом азота с рассмотренной конфигурацией называют пирольным. Пять негибридных орбиталей, перекрываясь, образуют единое шести­электронное облако, и пиррол, таким образом, удовлетворяет структурным критериям ароматичности.

В фуране и тиофене неподеленная пара электронов соответственно атомов кислорода и серы, находящаяся на негибридной р-орбитали, как и у пирроль­ного атома азота, включается в сопряжение с р-электронами атомов углерода с образованием ароматического секстета.

По своему электронному строению пиррол, фуран и тиофен изоэлектронны циклопентадиенид-иону, но в отличие от него молекулы гетеро­циклов не представляют собой правильные пятиугольники. Пиррол, фуран и тиофен относятся к π-избыточным гетероциклам, так как в них число электронов, образующих ароматическую систему, превышает об­щее число атомов в цикле (соотношение равно 6:5).

Конденсирован­ные системы.

Хинолин и изохинолин представляют собой изомерные конденсирован­ные системы пиридина и бензола, различающиеся способом сочленения ко­лец. Этим гетероциклам родственна конденсированная система пиридина и двух бензольных колец, называемая акридином. Ряд синтетических производ­ных всех трех гетероциклов применяется как лекарственные средства и кра­сители. К природным производным хинолина и изохинолина относятся не­которые алкалоиды.

Хинолин и изохинолин, сочетающие в себе два ароматических цикла, также являются ароматическими системами: они удовлетворяют правилу Хюккеля (десять π-электронов в едином сопряжении) и остальным структурным крите­риям ароматичности. Будучи изоэлектронными нафталину, оба гетеро­цикла сочетают в себе химические свойства пиридина и нафталина. Эти свойст­ва хинолина и изохинолина во многом сходны и поэтому рассматриваются в основном на примере хинолина как более распространенного гетероцикла.

Молекула пурина представляет собой конденсированную систему пи­римидина и имидазола. По всем критериям пурин относится к ароматическим соединениям. Его сопряженная система включает 10 р-электронов — по одному от атомов угле­рода и трех атомов азота пиридинового типа (N-1, N-3 и N-7 или N-9, в зави­симости от таутомерной формы) и два электрона атома азота пиррольного типа. Молекула пурина в целом представляет собой высоко π-недостаточную систему, хотя имидазольное кольцо обладает небольшой π-избыточностью:

Представители.

Пиррол - наибольшее распространение в растительном и животном мире имеют производные пиррола, являющиеся структурными фрагментами гема и хлорофиллов, пигментов желчи, ряда антибиотиков и ал­калоидов. Пиррол умеренно токсичен, его пары вызывают стойкое и упорное повышение температуры тела.

Индол служит исходным сырьём для синтеза гетероауксина, триптофана, используется в парфюмерной и фармацевтической промышленности. Многие алкалоиды содержат ядро индола.

Имидазол — структурный фрагмент витамина В12, некоторый алкалоидов, белковой аминокислоты гистидина и ее метаболита — биогенного амина гистамина, а также некоторый лекарственный средств. Вместе с шестичленным гетероциклом пиримидином он образует конденси­рованную гетероциклическую систему пурина.

Оксазол используется в фотографии, как флуоресцентный отбеливатель, антиоксидант. Многие оксазолы входят в состав ЛС, обладающих анальгезирующим, жаропонижающим, антибиотическим действием.

Пиримидин. Ядро пиримидина входит в состав нуклеиновых кислот, витаминов (B1), антибиотиков (амицетин, блеомицин), ЛС (барбитураты, пиримидиновые сульфамиды), сильных ядов, коэнзимов и др.

Пурин. Производные, содержащие систему пурина, широко распространены в природе и играют большую роль во многих биологических. биол. процессах. Важнейшие производные пурина - аденин, гуанин (пуриновые основания), гипоксантин, кофеин (пуриновые алкалоиды), мочевая кислота.

Ядро пурина входит в состав некоторых антибиотиков и нуклеотидов, являющихся структурными фрагментами нуклеиновых кислот. Пурин и ряд его производных обладают противоопухолевой, противовирусной и противоаллергической активностью.

  1. Пятичленные гетероциклы с одним гетероатомом: электронное строение, ацидофобность; кислотно–основные свойства пиррола; реакции электрофильного замещения, ориентация замещения, особенности нитрования, сульфирования, бромирования ацидофобных гетероциклов. Представители: пиррол, тиофен, фуран, пирролидин, тетрагидрофуран.

Поскольку пиррол, фуран и тиофен имеют сходное электронное строение, в их химическом поведении имеется много общего.

Реакции электрофильного замещения.

Как π-избыточные соединения, эти гетероциклы легко вступают в реакции с электрофильными реагентами. В незамещенных гетероциклах электрофильная атака осуществляется преимущественно по атому C-2 (α-положение), так как в промежуточно обра­зующемся катионе (σ-комплексе) резонансная стабилизация эффективнее, чем в катионе при атаке β-положения.

π-Избыточность пятичленных гетероциклов накладывает определенные ограничения на условия проведения реакций с электрофильными ре­агентами, которые обычно осуществляются в кислой среде. В результате они подвергаются полимеризации, а в водных средах происходит разрыв гетероцикла. (!) Свойство соединений подвергаться глубоким превращениям под дейст­вием кислот называют ацидофобностью, а сами гетероциклы — ацидофобными. Тиофен устойчив к действию сильных кислот и не относится к ацидофобным гетероциклам.

Многие реакции электрофильного замещения для пиррола и фурана тре­буют специальных условий, исключающих воздействие сильных кислот. Так, для сульфирования используется пиридинсульфотриоксид, часто обозначаемый С5Н5N•SO3. Бромирование осуществляют действием диоксандибромида С4н8О2•Вг2. В этом случае замещающийся протон свя­зывается диоксаном, что предотвращает разрушающее действие сильных кис­лот. Для введения нитрогруппы в используют ацетилнитрат — смешанный ангидрид уксусной и азотной кислот.

Замещенные пятичленные гетероциклы также вступают в реакции элек­трофильного замещения, и влияние заместителей на легкость замещения принципиально не отличается от аналогичных реакций карбоциклических соединений, т. е. электронодонорные заместители облегчают реакцию, а элек­троноакцепторные — замедляют ее.

Сульфирование. Пиррол избирательно сульфируется пиридинсульфотриоксидом в α-положение, а если оба α-положения заняты, то атакуется β-атом углерода.

Нитрование. При низких температурах пиррол очень легко нитруется ацетилнитратом.

Галогенирование. Пиррол настолько легко подвергается галогенированию, что без соблюдения специальный условий образуются стабильные тетразамещенные продукты.

Кислотные и основные свойства

Пиррол является слабой NH-кислотой и образует соли только со щелочными металлами или с такими сильными основаниями, как гидри­ды или амиды щелочных металлов, а также при сплавлении с твер­дым гидроксидом калия (но не натрия). Образующиеся соли легко гидроли­зуются водой.

Основность пиррола чрезвычайно низка, и значение рКBH+ ха­рактеризует основность π-системы гетероцикла, а не атома азота.

Представители.

Тиофен. Соединения ряда тиофена — это реагенты для разделения элементов, оптические отбеливатели, физиологически активные соединения. Многие производные — ЛС (антигельминтный препарат комбантрин, модифицированные антибиотики цефалотин, цефалоридин), мономеры для получения электропроводящих полимеров.

Фуран применяют для получения ТГФ, тиофена, пиррола, селенофена и малеинового ангидрида, а также в качестве растворителя и экстрагента масел и жиров. Производные фурана используют как ЛС (фурадонин, фуросемид) и средства защиты растений.

Пирролидин обнаружен в табаке и моркови, пирролидиновая структура входит в состав некоторых алкалоидов (никотина) и аминокислот пролина и гидроксипролина. Пирролидиновая структура входит в состав ЛС (пирацетама).

Тетрагидрофуран — это растворитель многих соединений; сырье для получения синтетических смол. Это структурный фрагмент некоторых антибиотиков (нактинов, с помощью которых осуществляется транспорт ионов К+ через клеточные мембраны.

  1. Пятичленные гетероциклы с двумя гетероатомами: электронное строение; кислотно–основные свойства, образование ассоциатов; реакции электрофильного замещения в пиразоле и имидазоле. Представители: пиразол, имидазол, тиазол, оксазол.

Группу пятичленныгх гетероциклов, которые формально образованы из пиррола, фурана и тиофена путем замены звена —CH= хотя бы одним пири­диновым атомом азота, называют азолами. Частный случай представляют циклы с двумя атомами азота — диазолы. Азолы, содержащие два гетероатома, в зависимости от их взаимного рас­положения подразделяются на 1,2-азолы и 1,3-азолы. Наиболее значимыми из них являются имидазол, пиразол и тиазол.

Ароматичность.

Азолы можно рассматривать как аза-аналоги пиррола, фурана и тиофена, в который звено — CH= (атом C-2 или C-3) заменено фрагментом — N=, т. е. пиридиновым атомом азота.

Азолы относятся к 6π-электронным ароматическим соединениям. Так, в пиразоле и имидазоле один из атомов азота (N-1) принадлежит к пиррольному типу, а другой — к пиридиновому. Пиррольный атом азота вносит в со­пряженную систему два р-электрона, а пиридиновый — один р-электрон (па­ры электронов гетероатомов, участвующие в сопряжении, показаны цветом). В оксазоле и тиазоле атомы азота принадлежат к пиридиновому типу, а атомы кислорода и серы имеют конфигурацию, подобную пиррольному атому азота. Все четыре гетероцикла изоэлектронны и в сопряжении принимают участие по шесть электронов, т. е. они соответствуют правилу Хюккеля.

Кислотные и основные свойства.

Азолы обладают основностью благода­ря пиридиновому атому азота. Имидазол сильнее пиридина.

Остальные азолы значительно менее основны имидизола, вследствие сильного элек­троноакцепторного индуктивного влияния гетероатома в положении 1; осо­бенно это заметно у 1,2-азолов.

Кислотные свойства присущи только диазолам — имидазолу и пиразолу, благодаря их NH-кислотному центру. Оба гетероцикла заметно превышают по кислотности пиррол. Причина этого заключается в лучшей делокализации отрицательного заряда в сопряженном основании с участием обоих атомов азота, как показано на примере имидазолат-иона:

Имидазол и пиразол проявляют амфотерный характер. В кристалличе­ском состоянии и в неполярных растворителях они образуют межмолекулярные ассоциаты. Ассоциаты имидазола содержат до 20 молекул, а пиразол су­ществует в виде димеров и тримеров:

Неожиданно высокие температуры кипения диазолов по сравнению с оксазолом и тиазолом свидетельствуют о прочных межмолекулярных водородных связях. Диазолы, замещенные по атому N-1 (но не С-производные), не способны образовывать водородные связи и имеют значительно более низкие температуры кипения.

Реакции электрофильного замещения.

Реакционная способность азолов по отношению к электрофильным реагентам определяется π-балансом систе­мы. Для этих гетероциклов общая π-избыточность или π-дефицитность зави­сит от того, какой из гетероатомов — пиррольного или пиридинового типа — оказывает большее влияние. Например, имидазол, пиразол и тиазол, для ко­торых ниже показаны заряды на атомах цикла, относятся к слабо π-избыточным системам. В то же время оксазолу присуща незна­чительная π-дефицитность, вызванная электроотрицательностью атома кис­лорода.

Реакционную способность молекулы будет определять общая (невысокая) π-избыточность. Из-за присутствия в цикле электроноакцепторного атома азота пи­ридинового типа азолы вступают в реакции электрофильного замещения на­много труднее, чем их аналоги с одним гетероатомом (пиррол, фуран и ти­офен), но легче, чем пиридин. Замещение в 1,3-азолах идет преимущественно по атому С-5, в 1,2-азолах — по атому С-4.

Имидазол.

Алкилирование и ацилирование по атому азота. При нагревании с алкилирующими агентами (алкилгалогенидами или алкилсульфатами) 1-алкилимидазолы получаются с невысоким выходом, так как побочно образуются имидазолиевые соли.

Действие на имидазол галогенангидридов или ангидридов кислот приво­дит к высокореакционноспособным N-ацильным производным.

Восстановлением N-ацилимидазолов с высоким выходом могут быть полу­чены альдегиды, а реакцией с магнийорганическими соединениями — кетоны:

Замещение по атомам углерода.

Нитрование и сульфирование.

Со слабыми электрофилами в кислой среде реакции не идут вовсе. До сих пор неизвестны примеры реак­ций алкилирования и ацилирования имидазола по Фриделю-Крафтсу.

В щелочной среде имидазолы со свободной NH-группой и хотя бы одним незамещенным кольцевым атомом углерода вступают в реакцию азосочетания:

С диазотированной сульфаниловой кислотой, например, образуются про­дукты, окрашенные в цвета от желтого до красного, обнаружить которые можно в количестве микрограммов. Это — давно известный тест Паули на имидазолы (качественная реакция).

Галогенирование имидазола в нейтральной среде, когда молекула не ионизирована, очень легко.

Пиразол.

Имеет много общего с имидазолом. Это касается как алкилирования и ацилирования по пиридиновому ато­му азота, так и электрофильного замещения. Отличие в реакциях электрофильного замещения заключается в направлении электрофильной атаки: в пиразоле она идет, как правило, по атому C-4, где π-электронная плотность максимальна. Если атом C-4 замещен, то электрофильная атака часто становится невозможной.

Подобно имидазолу, пиразол не алкилируется и не ацилируется по Фриделю-Крафтсу, но в отличие от имидазола он не вступает и в реакцию азосоче­тания.

Представители.

Пиразол и его производные в природе не обнаружены, но они использу­ются в производстве лекарственных средств (анальгин, амидопирин, антипирин) и пестицидов.

Тиазол. Важнейшее соединение ряда тиазол — тиамин (Vit В1). Многие производные — лекарственные препараты (норсульфазол, фталазол). Тиазолидиновое кольцо — структурный фрагмент пенициллина и разнообразных полусинтетических пенициллинов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]