Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория принятия решений.doc
Скачиваний:
395
Добавлен:
17.03.2016
Размер:
3.53 Mб
Скачать

Методы последовательной оптимизации

Недостатки свёртывания нескольких критериев заставляют искать другие подходы к решению задач многокритериального выбора. В данной лекции мы будем рассматривать методы последовательной оптимизации.

К методам последовательной оптимизации относят метод последовательных уступоки как частный случай данного метода –метод главного критерия,лексикографический критерий и метод равенства частных критериев.

Метод главного критерия

Существует один, часто применяемый способ свести многокритериальную задачу к однокритериальной – это выделить один (главный, основной) критерий F1 и стремиться его обратить в максимум (минимум), а на остальные F2, F3 , . . Fm частные критерии наложить только некоторые ограничения, потребовав, чтобы они были не меньше (больше) каких-то заданных величин. Таким образом, идея метода главного критерия заключается в том, что частные критерии обычно неравнозначны между собой (одни из них более важны, чем другие) и это позволяет выделит главный критерий, а остальные (критерии) рассматривать как дополнительные, сопутствующие. Например, при оптимизации плана работы предприятия можно потребовать, чтобы прибыль была максимальна, план по ассортименту – выполнен или перевыполнен, а себестоимость продукции – не выше заданной. При таком подходе все показатели, кроме одного – главного, переводятся в разряд ограничений. Такое различие позволяет сформулировать задачу многокритериальной оптимизации как задачу нахождения условного экстремума основного (главного) критерия:

Метод последовательных уступок

Встречаются случаи, когда пользователь готов на некоторое снижение величин более важных критериев, чтобы повысить величину менее важных. В таких ситуациях можно воспользоваться методом уступок. Идею этого метода можно изложить следующим образом.

Метод последовательных уступок. Согласно этому методу локальные критерии предварительно ранжируются по важности. Затем ищется наилучшее решение по наиболее важному критерию. На следующем шаге ищется решение наилучшее по следующему по важности критерию, причем допускается потеря в значении первого критерия не более чем на некоторую обусловленную величину, т.е. делается уступка по первому критерию. На третьем шаге оптимизируется решение по третьему критерию, при заданных уступках по первому и второму и т.д., пока не будет рассмотрен последний по важности критерий.

При решении многокритериальных задач методом последовательных уступок вначале нужно определить важность частных критериев, т.е. расположить частные критерии в порядке убывания важности. Таким образом, главным считается критерий F1 , менее важным F2, . . . , Fm. Минимизируется первый по важности критерий и определяется его наименьшее значение F1min . Затем назначается величина допустимого снижения уступки 10 критерия F1 и ищется наименьшее значение критерия F2 при условии, что значение F1 должно быть не больше, чем F1min+1. Снова назначается уступка 20, но уже по второму критерию, которая вместе с первой используется при нахождении условного минимума F3 и т.д. Наконец, минимизируется последний по важности критерий Fm при условии, что значения каждого критерия Fi из m-1 предыдущих должны быть не больше соответствующей величины Fimin+i .Получаемое в итоге решение считается оптимальным.

Таким образом, оптимальным считается всякое решение, являющимся решением последней задачи из следующей последовательности задач

1) Найти F1 min=min F1(X)

XD

2) Найти F2 min.=min F2(X) (1)

XD

F1 F1min+1

m) Найти Fm min.=min Fm(X)

XD

Fi Fimin+i

i=1,2, . . . ,m-1

Величины уступок выбирают в пределах инженерной точности, т.е. 5-10% от наименьшего значения критерия.

Пример. Пусть в области D={0;4} заданы два критерия F1(x)=(x-1)2+1 F2(x)=(x-2)2+2, которые нужно минимизировать (рис.1). Критерий F1важнее критерия F2 (F1 предпочтительнее F2).

Рис.1. Графики функций F1иF2

1. Согласно алгоритму минимизируем первый по важности критерий, и определяется его наименьшее значение F1min. Формулируем задачу оптимизации

найти min F1(x)= min[(x-1)2+1]

при ограничениях

x{0;4}

Минимум для первого критерия достигается в точке x1opt=1 и равен F1(x1opt)=1

2. Затем назначается величина уступки 1=0.1 критерия F1 и ищется наименьшее значение критерия F2 при условии, что значение F1 должно быть не больше, чем F1min+1. Таким образом, мы получили следующую задачу оптимизации

minF2(x)=min[(x-2)2+2]

при ограничениях

x{0;4}

(x-1)2+11+0.1

Для решения воспользуемся методом множителей Лагранжа. В результате получим безусловную задачу оптимизации

Ф(x, λ)= (x-2)2+2+ λ((x-1)2-0.1).

Находим частные производные и приравниваем их к нулю. В результате получим систему уравнений

Решая эту систему, получим x2opt=1.32.

Согласно алгоритму, решение, полученное на последнем этапе, и будет считаться оптимальным, т.е. xopt=1.32.

Решим данную задачу, используя систему MathCad.

f(x):=(x-2)2+2 целевая функция

x:=1 начальное приближение

Given

0

ограничения

≤x≤4

(x-1)2≤0.1

p:=Minimize(f,x) p=1.316.

Ответ: xopt=1.32.

Зам. Метод последовательных уступок целесообразно применять для решения тех инженерных задач, в которых все частные критерии упорядочены по степени важности, причём каждый критерий настолько более важен, чем последующий, что можно ограничиться учётом только попарной связи критериев и выбирать величину допустимого снижения очередного критерия с учётом поведения лишь одного следующего критерия.

Недостатком метода являются трудности с назначением и согласованием величин уступок, возрастающие с ростом размерности векторного критерия, а также необходимость формирования неизменного для всей задачи априорного ранжирования критериев.

Как видим, в методе уступок предполагается, что разница в важности критериев не слишком велика. Можно предположить, что величина уступок как-то связана с нашим ощущением этой разницы.