Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Nikitenko

.pdf
Скачиваний:
51
Добавлен:
07.03.2016
Размер:
3.48 Mб
Скачать

Производственная программа машиностроительного завода содержит номенклатуру изготавливаемых изделий (с указанием типов и размеров), количество изделий каждого наименования, подлежащих выпуску в течение года, перечень и количество запасных деталей к выпускаемым изделиям.

Единичное производство характеризуется выпуском изделий широкой номенклатуры в малом количестве и единичных экземплярах. Изготовление изделий либо совсем не повторяется, либо повторяется через неопределенное время, например: выпуск экспериментальных образцов машин, крупных металлорежущих станков, прессов и т. д.

Всерийном производстве изделия изготовляют по неизменным чертежам партиями и сериями, которые повторяются через определенные промежутки времени. В зависимости от числа изделий в серии серийное производство разделяют на мелко-, средне- и крупносерийное. Продукцией серийного производства являются машины, выпускаемые в значительном количестве: металлорежущие станки, насосы, компрессоры и т. д. В этом производстве используют высокопроизводительное, универсальное, специализированное и специальное оборудование, универсальные, переналаживаемые быстродействующие приспособления, универсальный и специальный инструмент. Широко применяют станки с ЧПУ, многоцелевые станки.

Оборудование располагают по ходу технологического процесса, а часть его – по типам станков. На большинстве рабочих мест выполняют периодически повторяющиеся операции, В серийном производстве цикл изготовления продукции короче, чем в единичном производстве. Массовым называется производство большого числа изделий одного и того же типа по неизменным чертежам в течение длительного времени. Продукцией массового производства являются изделия узкой номенклатуры и стандартного типа.

Вэтом производстве на большинстве рабочих мест выполняют только одну закрепленную за ними постоянно повторяющуюся операцию. Оборудования в поточных линиях располагают по ходу технологического процесса. В массовом производстве широко используют специальные станки, станкиавтоматы, автоматические линии и заводы, специальные режущие измерительные инструменты и различные средства автоматизации.

Лекция 2. Служебное назначение машины. Качество машины. Точность деталей. Точность обработки

Служебное назначение машины. Любая машина создается для удовлетворения определенной потребности человека, которая находит отражение в служебном назначении машины. Создание любой машины является следствием потребности того или иного технологического процесса. Такой подход предопределяет необходимость в четком определении тех функций, которые должна выполнять данная машина, т. е. в определении ее служебного назначения.

11

Машина может быть определена как устройство, выполняющее целесообразные механические движения, служащие для преобразования полуфабрикатов в предметы (изделие) или действия необходимые человеку.

Технологической машиной называется машина, в которой преобразование материала состоит в изменении его формы, размеров и свойств. К этому классу машин относятся металлорежущие станки, кузнечно-прессовое оборудование и др.

Под служебным назначением машины понимается максимально уточненная и четко сформулированная задача, для решения которой предназначается машина.

Однако и приведенная формулировка недостаточно развернута, чтобы создать и выпустить станок, отвечающий своему служебному назначению. Ее необходимо дополнить такими данными, как характер и точность заготовок, которые должны поступать на станок, материал режущего инструмента, необходимость или отсутствие необходимости обработки полученных поверхностей на валиках и т. д. В ряде случаев необходимо указать те условия, в которых должны работать машины; например, возможные колебания температуры, влажности и т. д.

Опыт машиностроения показывает, что каждая ошибка, допущенная при выявлении и уточнении служебного назначения машины, а также и ее механизмов, не только приводит к созданию недостаточно качественной машины, но и вызывает лишние затраты труда на ее освоение. Нередко недостаточно глубокое изучение и выявление служебного назначения машины порождает излишне жесткие, экономически неоправданные требования к точности и другим показателям качества машины.

Каждая машина, как и ее отдельные механизмы, выполняет свое служебное назначение при помощи ряда поверхностей или их сочетаний, принадлежащих деталям машины. Условимся называть такие поверхности или их соче-

тания исполнительными поверхностями машины или ее механизмов.

Действительно, сочетания конических поверхностей переднего конца шпинделя и пиноли задней бабки определяют положение обрабатываемой на станке детали, установленной в центрах, поверхности которых входят в комплекс исполнительных поверхностей. На фланец переднего конца шпинделя монтируется поводковый патрон, через который обрабатываемой детали сообщается вращательное движение. Поверхности резцедержателя определяют положение резцов относительно обрабатываемой детали и непосредственно передают им необходимые для обработки движения. Исполнительными поверхностями зубчатой передачи, рассматриваемой как механизм, являются сочетания боковых рабочих поверхностей зубьев пары зубчатых колес, работающих совместно. Исполнительными поверхностями двигателя внутреннего сгорания, рассматриваемого как механизм, служащего для преобразования тепловой энергии в механическую, являются поверхности поршня и рабочего цилиндра и т. д.

12

Основы разработки конструктивных форм машины и ее деталей.

После того как выявлено и четко сформулировано служебное назначение машины, выбирают исполнительные поверхности или заменяющие их сочетания поверхностей надлежащей формы. Затем выбирается закон относительного движения исполнительных поверхностей, обеспечивающий выполнение машиной ее служебного назначения, разрабатывается кинематическая схема машины и всех составляющих ее механизмов.

На следующем этапе рассчитываются силы, действующие на исполнительных поверхностях машины, и характер их действия. Используя эти данные, рассчитывают величину и характер сил, действующих на каждом из звеньев кинематических цепей машины и её механизмов с учетом действия сил сопротивления (трения, инерции, веса и т. д.).

Зная служебное назначение каждого звена кинематических цепей машины или ее механизмов, закон движения, характер, величину действующих на него сил и ряд других факторов (среда, в которой должны работать звенья и т. д.), выбирают материал для каждого звена. Путем расчета определяются конструктивные формы, т. е. превращают их в детали машины.

Для того чтобы детали, несущие исполнительные поверхности машины и ее механизмов, а также и все другие, выполняющие функции звеньев ее кинематических цепей, двигались в соответствии с требуемым законом их относительного движения и занимали одни относительно других требуемые положения, их соединяют при помощи различного рода других деталей в виде корпусов, станин, коробок, кронштейнов и т. д., которые называют базирующими де-

талями.

Конструктивные формы каждой детали машины и ее механизмов создаются, исходя из ее служебного назначения в машине, путем ограничения необходимого количества выбранного материала различными поверхностями и их сочетаниями.

Сточки зрения технологии изготовления будущей детали, например, валика, использование цилиндрических поверхностей более экономично, поэтому для опорных частей валика выбирают две цилиндрические поверхности.

Сточки технологии механической обработки валика, его целесообразно было бы сделать цилиндрическим одного диаметра на всю длину. Однако с точки зрения монтажа зубчатых колес и их обработки такая конструкция была бы менее экономичной. Исходя из этого, останавливаемся для данных производственных условий на конструкции ступенчатого валика. Выбор поверхностей, которые должны ограничить кусок материала, и придание ему требуемой формы еще не означает, что валик будет правильно выполнять свое служебное назначение в машине.

Поверхности, относительно которых определяется положение других поверхностей, принято называть базирующими или, короче, базами.

Следовательно, при разработке конструктивных форм детали вначале необходимо создать поверхности, принимаемые за ее базы, тогда все остальные

13

поверхности должны занять относительно их положение, требуемое служебным назначением детали в машине.

Деталь является пространственным телом, поэтому, у нее должно быть в общем случае, как это следует из теоретической механики, три базирующие поверхности, представляющие собой систему координат. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей, образующих конструктивные формы детали.

Таким образом, каждая деталь должна иметь свои системы координат. Как правило, в качестве координатных плоскостей обычно используются поверхности основных баз и их оси. Относительно этих координатных плоскостей определяется положение всех остальных поверхностей детали, при помощи которых создаются ее конструктивные формы (вспомогательные базы, исполнительные и свободные поверхности).

Из изложенного следует, что создание конструктивных форм деталей следует разрабатывать, учитывая из их служебное назначение и требования технологии их наиболее экономичного изготовления и монтажа.

В соответствии с этим под деталью следует понимать необходимое количество выбранного материала, ограниченного рядом поверхностей или их сочетаний, расположенных одни относительно других (выбранных за базы), исходя из служебного назначения детали в машине и наиболее экономичной технологии изготовления и монтажа.

Построение машины осуществляется путем соединения составляющих ее деталей. Базирующая деталь машины должна соединять и обеспечивать требуемые служебным назначением машины относительные положения (расстояния и повороты) всех составляющих машину сборочных единиц и деталей.

Соединение деталей и сборочных единиц осуществляется путем приведения в соприкосновение поверхностей основных баз присоединяемой сборочной единицы или детали с вспомогательными базами детали, к которой они присоединяются (базирующей). Следовательно, поверхности основных баз присоединяемой детали и вспомогательных баз присоединяемой детали и вспомогательных баз базирующей детали, к которой они присоединяются, являются негативными.

Это очень важное обстоятельство, играющее большую роль при разработке конструктивных форм деталей, разработке технологии их изготовления и конструирования приспособлений.

Необходимость в правильных геометрических формах поверхностей деталей появляется тогда, когда детали оставляется хотя бы одна степень свободы для выполнения служебного назначения в машине.

В подобных случаях между поверхностями основных баз такой детали и вспомогательных баз детали, к которой они присоединяются, возникает трение, порождающее износ сопряженных поверхностей. Износ вызывает, в свою очередь, изменение размеров и положения поверхностей основных и вспомогательных баз сопрягаемых деталей, а, следовательно, изменение расстояний и поворотов этих поверхностей (положения), а тем самым и относительного по-

14

ложения и движения деталей. В конечном итоге машина или ее механизмы не смогут выполнять экономично, а иногда и физически свое служебное назначение. Поэтому в дополнение к необходимости получения поверхностей деталей правильной геометрической формы добавляется требование обеспечения требуемой степени их шероховатости и качества поверхностного слоя материала.

Одной из задач технологии машиностроения является экономичное получение деталей, имеющих требуемую точность размеров, поворота, геометрической формы поверхностей, требуемую их шероховатость и качество поверхностного слоя материала. Для этого исполнительные поверхности основных и вспомогательных баз деталей, как правило, подвергают обработке.

Качество машины. Для того чтобы машина экономично выполняла свое служебное назначение, она должна обладать необходимым для этого качеством.

Под качеством машины понимается совокупность ее свойств, определяющих соответствие ее служебному назначению и отличающих машину от других.

Качество каждой машины характеризуется рядом методически правильно отработанных показателей, на каждый из которых должна быть установлена количественная величина с допуском на ее отклонения, оправдываемые экономичностью выполнения машиной ее служебного назначения.

Система качественных показателей с установленными на них количественными данными и допусками, описывающая служебное назначение машины, получила название технических условий и норм точности на приемку готовой машины.

К основным показателям качества машины относятся: стабильность выполнения машиной ее служебного назначения; качество выпускаемой машиной продукции, долговечность физическая, т. е. способность сохранять первоначальное качество во времени; долговечность моральная, или способность экономично выполнять служебное назначение во времени; производительность, безопасность работы; удобство и простота обслуживания управления; уровень шума, коэффициент полезного действия, степень механизации и автоматизации и т. д. Основные технические характеристики и качественные показатели некоторых машин и составляющих их частей, выпускаемых в больших количествах, стандартизованы.

Точность обработки. Под точностью обработки понимают степень соответствия обработанной детали техническим требованиям чертежа в отношении точности размеров, формы и расположения поверхностей. Все детали, у которых отклонения показателей точности лежат в пределах, установленных допусков, пригодны для работы.

В единичном и мелкосерийном производстве точность деталей получают методом пробных рабочих ходов, т. е. последовательным снятием слоя припуска, сопровождаемым соответствующими измерениями. В условиях мелкосерийного и среднесерийного производства применяют обработку с настройкой станка по первой пробной детали партии или по эталонной детали. В крупносерийном и массовом производствах точность детали обеспечивают методом

15

автоматического получения размеров на предварительно настроенных станкахавтоматах, полуавтоматах или автоматических линиях.

В условиях автоматизированного производства в станок встраивают наладчики, представляющий собой измерительное и регулировочное устройство, которое в случае выхода размера обрабатываемой поверхности за пределы поля допуска автоматически вносит поправку в систему «станок-приспособление – инструмент-заготовка» (технологическая система) и подналаживают ее на заданный размер.

На станках, выполняющих обработку за несколько рабочих ходов (например, на круглошлифовальных), применяют устройства активного контроля, которые измеряют размер детали в процессе обработки. При достижении заданного размера устройства автоматически отключают подачу инструмента. Применение этих устройств повышает точность и производительность обработки путем уменьшения времени на вспомогательные операции. Эта цель достигается также путем оснащения металлорежущих станков системами адаптивного управления процессом обработки. Система состоит из датчиков получения информации о ходе обработки и регулирующих устройств, вносящих в нее поправки.

На точность обработки влияют: погрешности станка и его износ; погрешность изготовления инструментов, приспособлений и их износ; погрешность установки заготовки на станке; погрешности, возникающие при установке инструментов и их настройке на заданный размер; деформации технологической системы, возникающие под действием сил резания; температурные деформации технологической системы; деформация заготовки под действием собственной массы, сил зажима и перераспределения внутренних напряжений; погрешности измерения, которые обусловлены неточностью средств измерения, их износом и деформациями и др. Эти факторы непрерывно изменяются в процессе обработки, вследствие чего появляются погрешности обработки.

Собственная точность станков (в ненагруженном состоянии) регламентирована стандартом для всех типов станков. При эксплуатации происходит изнашивание станка, в результате чего собственная точность его снижается.

Износ режущего инструмента влияет на точность обработки в партии заготовок при одной настройке станка (например, при растачивании отверстий износ резца приводит к появлению конусообразности).

Погрешности, допущенные при изготовлении и износе приспособления, приводят к неправильной установке заготовки и являются причинами появления погрешностей обработки. В процессе обработки под действием сил резания и создаваемых ими моментов элементы технологической системы изменяют относительное пространственное положение из-за наличия стыков и зазоров в парах сопрягаемых деталей и собственных деформаций деталей.

В результате возникают погрешности обработки. Упругая деформация технологической системы зависит от силы резания и жесткости этой системы.

Жесткостью J технологической системы называют отношение приращения нагрузки ∆Р к вызванному им приращению ∆У мм, упругого обжатия: J =∆Р/∆У

16

Применительно к станку под жесткостью понимают его способность сопротивляться появлению упругих обжатий под действием сил резания. Как правило, жесткость станка определяет экспериментальным путем.

Процесс резания сопровождается выделением теплоты. В результате изменяется температурный режим технологической системы, что приводит к дополнительным, пространственным перемещениям элементов станка вследствие изменения линейных размеров деталей и появлению погрешностей обработки. Заготовки, имеющие малую жесткость (L/D>10, где L – длина заготовки; D – ее диаметр), под действием сил резания и их моментов деформируются. Например, длинный вал небольшого диаметра при обработке на токарном станке в центрах прогибается. В результате диаметр на концах вала получают меньше, чем в середине, т. е. возникает бочкообразность.

В отливках и кованых заготовках в результате неравномерного остывания возникают внутренние напряжения. При резании вследствие снятия верхних слоев материала заготовки происходят перераспределение внутренних напряжений и ее деформация. Для уменьшения напряжений отливки подвергают естественному или искусственному старению. Внутренние напряжения появляются в заготовке при термической обработке, холодной правке и сварке.

Под достижимой точностью понимают точность, которая может быть обеспечена при обработке заготовки рабочим высокой квалификации на станке, находящемся в нормальном состоянии, при максимально возможных затратах труда и времени на обработку.

Экономическая точность – такая точность, для обеспечения которой затраты при данном способе обработки будут меньше, чем при использовании другого способа обработки той же поверхности.

Точность деталей. Точность деталей – это степень приближения формы детали к геометрически правильному ее прототипу. За меру точности детали принимают значения допусков и отклонений от теоретических значений показателей точности, которыми она характеризуется.

Стандартами, введенными в действие в качестве государственных стандартов, а также ГОСТ 2.308-79, ГОСТ 24642-81, ГОСТ 24643-81 установлены следующие показатели точности: 1) точность размеров, т. е. расстояний между различными элементами деталей и сборочных единиц; 2) отклонение формы, т. е. отклонение (допуск) формы реальной поверхности или реального профиля от формы номинальной поверхности или номинального профиля; 3) отклонение расположения поверхностей и осей детали, т. е. отклонение (допуск) реального расположения рассматриваемого элемента от его номинального расположения.

Шероховатость поверхности не входит в отклонение формы. Иногда допускается нормировать отклонение формы, включая шероховатость поверхности. Волнистость включается в отклонение формы. В обоснованных случаях допускается нормировать отдельно волнистость поверхности или часть отклонения формы без учета волнистости.

Точность размеров детали характеризуется допуском Т, который определяют как разность двух предельных (наибольшего и наименьшего) допустимых

17

размеров. Величина допуска Т зависит от размера квалитета. Например, размер, выполняемый по 7-му квалитету, более точный, чем такой же размер, выполненный по 8-му или 10-му квалитету.

Точность размеров на чертежах проставляют условными обозначениями поля допуска (40Н7; 50К5) или предельных отклонений в миллиметрах, или условными обозначениями полей допусков и отклонений.

Точность размеров грубее 13-го квалитета оговаривают в технических требованиях, где указывают, по какому квалитету их следует выполнять. Например, «неуказанные предельные отклонения размеров: отверстий Н14, валов h 14».

Точность формы характеризуется допуском Т или отклонениями от заданной геометрической формы. Стандарт рассматривает допуски и отклонения двух форм поверхностей; цилиндрических и плоских. Количественно отклонение формы оценивают наибольшим расстоянием от точек реальной поверхности (профиля) до прилегающей поверхности (профилю).

Допуск формы – наибольшее допустимое значение отклонения формы. Отклонения формы отсчитывают по нормали от прилегающих прямых, плоскостей, поверхностей и профиля.

Отклонение от плоскостности – наибольшее расстояние от точек реальной поверхности до прилегающей плоскости в пределах нормируемого участка. Частными видами отклонений от плоскости являются выпуклость и вогнутость.

Отклонение формы цилиндрических поверхностей характеризуются допуском цилиндричности, который включает отклонение от круглости поперечных сечений и профиля продольного сечения. Частными видами отклонений от округлости являются овальность и огранка. Отклонения профиля в продольном сечении характеризуются допуском прямолинейности образующих и разделяются на конусообразность, бочкообразность и седлообразность.

Точность расположения осей характеризуется отклонениями расположения. При оценке отклонений расположения отклонения формы рассматриваемых и базовых элементов исключают из рассмотрения. При этом реальные поверхности (профили) заменяют прилегающими, а за оси плоскости симметрии и центры реальных поверхностей или профилей принимают оси, плоскости симметрии и центры прилегающих элементов.

Отклонение от параллельности плоскостей – разность наибольшего и расстояний между плоскостями в пределах нормируемого участка.

Отклонение от параллельности осей (или прямых) в пространстве – геометрическая сумма отклонений от параллельности проекций осей (прямых) в двух взаимно перпендикулярных плоскостях; одна из этих плоскостей является общей плоскостью осей.

Отклонение от перпендикулярности плоскостей – отклонение угла между плоскостями от прямого угла (90°), выраженное в линейных единицах на длине нормируемого участка.

Отклонение от соосности относительно общей оси – наибольшее рас-

18

стояние (∆1,∆2,...) между осью рассматриваемой поверхности вращения и общей осью двух или нескольких поверхностей вращения на длине нормируемого участка. Кроме термина «отклонение от соосности», в отдельных случаях может применяться понятие отклонения от концентричности ∆ – расстояние в заданной плоскости между центрами профилей (линий), имеющих номинальную форму окружности. Допуск концентричности Т определяется в диаметральном и радиусном выражениях.

Отклонение от симметричности относительно базового элемента – это наибольшее расстояние ∆ между плоскостью симметрии (осью) рассматриваемого элемента (или элементов) и плоскостью симметрии базового элемента в пределах нормируемого участка. Этот допуск определяется в диаметральном и радиусном выражениях. Отклонение от симметричности относительно базовой оси определяется в плоскости, проходящей через базовую ось перпендикулярно к плоскости симметрии.

Позиционное отклонение – наибольшее расстояние ∆ между реальным расположением элемента (его центра, оси или плоскости симметрии) и его номинальным расположением в пределах нормируемого участка. Позиционный допуск определяется в диаметральном и радиусном выражениях.

Отклонения от пересечения осей – наименьшее расстояние ∆ между осями, номинально пересекающимися.

Радиальное биение – разность ∆ наибольшего и наименьшего расстояний от точек реального профиля поверхности вращения до базовой оси в сечении плоскостью, перпендикулярно к базовой оси. Радиальное биение является результатом совместного проявления отклонений от круглости профиля рассматриваемого сечения и отклонения его центра относительно базовой оси. Оно не включает в себя отклонение формы и расположения образующей поверхности вращения.

Торцовое биение – разность ∆ наибольшего и наименьшего расстояний от точек реального профиля торцовой поверхности до плоскости, перпендикулярной к базовой оси.

Допуски формы и расположения указывают на чертежах согласно ГОСТ 2.308–79. Вид допуска формы или расположения должен быть обозначен на чертеже знаком. Для допусков расположения и суммарных допусков формы и расположения дополнительно указывают базы, относительно которых задается допуск, и оговаривают зависимые допуски расположения или формы. Знак и значение допуска или обозначение базы вписывают в рамку допуска, разделенную на два или три поля, в следующем порядке (слева направо): знак допуска, значение допуска в миллиметрах, буквенное обозначение базы (баз).

Рамки допуска вычерчивают сплошными тонкими линиями или линиями одинаковой толщины с цифрами. Высота цифр и букв, вписываемых в рамки, должна быть равна размеру шрифта размерных чисел. Допуски формы и расположения поверхностей выполняют предпочтительно в горизонтальном положении, при необходимости рамку располагают вертикально так, чтобы данные находились с правой стороны чертежа.

19

Линией, оканчивающейся стрелкой, рамку допуска соединяют с контурной или выносной линией, продолжающей контурную линию элемента, ограниченного допуском. Соединительная линия должна быть прямой или ломаной а ее конец, оканчивающийся стрелкой, должен быть обращен к контурной (выносной) линии элемента, ограниченного допуском в направлении измерения отклонения.

В случаях, когда это оправдано удобствами выполнения чертежа, допускается: начинать соединительную линию от второй (задней) части рамки допуска; заканчивать соединительную линию стрелкой на выносной линии, продолжающей контурную линию элемента, и со стороны материала детали.

Если допуск относится к поверхности или ее профилю (линии), а не к оси элемента, то стрелку располагают на достаточном расстоянии: от конца размерной линии. Если допуск относится к оси или плоскости симметрии определенного элемента, то конец соединительной линии должен совпадать с продолжением размерной линии соответствующего размера. При недостатке места на чертеже стрелку размерной линии можно заменить стрелкой выносной линии.

Если размер элемента уже указан один раз на других размерных линиях данного элемента, используемых для обозначения допуска формы или расположения, то он не указывается. Размерную линию без размера следует рассматривать как составную часть этого обозначения. Если допуск относится к боковой поверхности резьбы, то рамку допуска соединяют. Если допуск относится к оси резьбы, то рамку допуска соединяют с размерной линией. Если допуск относится к общей оси или плоскости симметрии и из чертежа ясно, для каких элементов данная ось (плоскость) является общей, то соединительную линию проводят к общей оси.

Величина допуска действительна для всей поверхности или длины элемента. Если допуск должен быть отнесен к определенной ограниченной длине, которая может находиться в любом месте ограниченного допуском элемента, то длину нормируемого участка в миллиметрах вписывают после значения допуска и отделяют от него наклонной линией.

Если допуск задан таким образом на плоскости, данный нормируемый участок действителен для произвольного расположения и направления на поверхности. Если необходимо задать допуск по всему элементу и одновременно задать допуск на определенном участке, то второй допуск указывают под первым в объединенной рамке допуска.

Если допуск должен относиться к нормируемому участку, расположенному в определенном месте элемента, то нормируемый участок обозначают и штрихпунктирной линией, ограничив ее размерами. Дополнительные данные пишут над или под рамкой допуска.

Если необходимо для одного элемента задать два разных вида допуска объединяют и располагают их в рамке допуска. Если для поверхности надо одновременно указать обозначение допуска формы или расположения и буквенное обозначение поверхности, используемое для нормирования другого допуска, то рамки с обоими обозначениями располагают рядом на одной соедини-

20

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]