Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
химия.docx
Скачиваний:
378
Добавлен:
01.03.2016
Размер:
323.3 Кб
Скачать

22. Спектроскопия ядерного магнитного резонанса. Ядерный магнитный резонанс (ямр) и условия его возникновения.

Метод я́дерного магни́тного резона́нса (ЯМР) основан на взаимодействии внешнего магнитного поля с ядрами, имеющими магнитный момент, т. е. для ядер с ненулевым спином. К ним относятся 1Н, 13С, 15N, 31P и другие. Спектроскопия ЯМР на ядрах 1Н в настоящее время наиболее развита и получила название протонный магнитный резонанс (ПМР).

Переходы между ядерными магнитными уровнями возможны для ядер, обладающих магнитным моментом, т.е. имеющих спиновое квантовое число 1, не равное нулю. Особенность спектроскопии ЯМР по сравнению с другими физическими методами установления структуры органических соединений (например, масс-спектрометрия и ИК спектроскопия) состоит в том, что в этом случае каждый сигнал спектра обусловлен резонансом соответствующего ядра (атома, спина) в его индивидуальном окружении.

Первый спектр ЯМР наблюдал И. А. Раби с сотрудниками в 1934 г., они получили резонансные кривые поглощения для ядер 6Li, 7Li и 19F в молекулярных пучках LiС1 и NaF.

23. Масс-спектрометрия органических соединений. Происхождение масс-спектров (ионизация молекул органических соединений при бомбардировке электронами, лазерного излучения и др.).

Масс-спектрометрия— метод исследования вещества, основанный на определении отношения массы к заряду ионов, образующихся при ионизации представляющих интерес компонентов пробы. Один из мощнейших способов качественной идентификации веществ, допускающий также и количественное определение. Можно сказать, что масс-спектрометрия — это «взвешивание» молекул, находящихся в пробе.

Масс-спектр — это зависимость интенсивности ионного тока (количества вещества) от отношения массы к заряду (природы вещества). Поскольку масса любой молекулы складывается из масс составляющих её атомов, масс-спектр всегда дискретен, хотя при низком разрешении масс-спектрометра пики разных масс могут перекрываться или даже сливаться. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут влиять на масс-спектр.

Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Чем больше молекула, тем больше вероятность того, что во время ионизации она превратится в многозарядный ион. Поэтому особенно сильно данный эффект проявляется в отношении крайне больших молекул. При некоторых видах ионизации молекула может распадаться на несколько характерных частей, что даёт дополнительные возможности идентификации и исследования структуры неизвестных веществ.

24. Рентгеноструктурный анализ органических соединений. Преимущества и недостатки метода рентгеноструктурного анализа в исследовании органических соединений.

 методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией и электронографией является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны, порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Рентгеновский метод позволяет надежно определять молекулярные веса белков; для этого необходимы хорошо образованные кристаллы белков, дающие возможность получать хорошие снимки.

25. Мониторинг окружающей среды. Общее понятие об источниках химического загрязнения окружающей среды и химических и физико-химических методов анализа воздуха, почвы, природной воды, бытовых и промышленных сточных вод.

Мониторинг окружающей среды— комплексная система долгосрочных наблюдений, оценки и прогноза изменения состояния окружающей среды под влиянием антропогенных факторов. Основными задачами мониторинга служат: наблюдение за состоянием биосферы, оценка и прогноз состояния природной среды, выявление факторов и источников антропогенных воздействий на окружающую среду, предупреждение о создающихся критических ситуациях, вредных или опасных для жизнедеятельности и здоровья людей и других живых организмов.

Химическое загрязнение – изменение естественного химического состава окружающей среды, вызванное превышением средних многолетних концентраций химических веществ, постоянно присутствующих в окружающей среде или привнесением в окружающую среду новых, чуждых ей веществ.

Данные методы используют для очистки от растворенных примесей, а в некоторых случаях и от взвешенных веществ. Многие методы физико-химической очистки требуют предварительного глубокого выделения из сточной воды взвешенных веществ, для чего широко используют процесс коагуляции.

В настоящее время в связи с использованием оборотных систем водоснабжения существенно увеличивается применение физико-химических методов очистки сточных вод, основными из которых являются:

1.флотация,2.сорбция,.ионообменная и электрохимическая очистка,

.гиперфильтрация,.нейтрализация,.экстракция,.эвапорация.

Методы анализа сточных и природных вод

Атомно-абсорбционная спектрометрия Высокоэффективная жидкостная хроматография Газовая хроматография, Гравиметрия, ИК- спектроскопия ИСП-спектрометрия, Капиллярный электрофорез Титриметрия, Фотометрия, Хромато-масс-спектрометрия и др

Закон действия масс и гомогенные системы