Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Farm_khimia_ekzamen.docx
Скачиваний:
697
Добавлен:
05.02.2016
Размер:
482.15 Кб
Скачать

54Электрофорез

Под действием электрического поля заряженные частички, растворенные или диспергированные в растворе электролита, передвигаются в направление к электроду противоположной полярности, а молекулы с положительными и отрицательными зарядами передвигаются в направлении их суммарного заряда. Скорость передвижения прямо пропорциональна суммарному заряду частицы и обратно пропорциональна ее размеру, либо молекулярной массе.

Электрофоретическая подвижность является величиной, характерной для данного вещества. Различают абсолютную и относительную электрофоретическую подвижность. Абсолютная электрофоретическая подвижность под влиянием градиента потенциала 1 В на 1 см измеряется в сантиметрах в секунду. Относительная электрофоретическая подвижность есть отношение подвижности исследуемого вещества к подвижности другого вещества, принятого за стандарт.В гель-электрофорезе движение частиц замедляется взаимодействием с окружающей матрицей геля, что действует как молекулярное сито. Встречные взаимодействия электрической силы и молекулярного сита приводят к диференциации скорости передвижения частиц в зависимости от их размеров, форм и зарядов. В ходе электрофореза из-за различия физико-химических свойств, разные макромолекулярные смеси передвигаются с разной скоростью и, таким образом, разделяются на дискретные фракции.

Существует два различных метода электрофореза: фронтальный и зональный. Фронтальный электрофорез проводят в свободной незакрепленной среде, и он является единственным способом определения абсолютной электрофоретической подвижности. Зональный электрофорез проводят в закрепленной среде, роль которой состоит в стабилизации электрофоретических зон.КАПИЛЛЯРНЫЙ ЭЛЕКТРОФОРЕЗ Капиллярный электрофорез - это физический метод анализа, основанный на миграции внутри капилляра заряженных аналитов, растворённых в растворе электролита, под влиянием постоянного электрического поля. Скорость миграции аналита под влиянием электрического поля с напряжённостью E определяется электрофоретической подвижностью аналита и электроосмотической подвижностью буферного раствора внутри капилляра. Электрофоретическая подвижность вещества (pep) зависит от его свойств (электрический заряд, размер и форма молекул) и от свойств буферного раствора, в котором происходит процесс миграции (тип и ионная сила электролита, рН, вязкость и наличие добавок). Электрофоретическая скорость (vep) вещества, частицы которого принимаются за сферические, описывается уравнением:

где: q - эффективный заряд вещества, n - вязкость раствора электролита, r -Стоксовский радиус частиц вещества, V - приложенное напряжение, L - общая длина капилляра.

При помещении капилляра, заполненного буферным раствором, в электрическое поле внутри капилляра начинается перемещение растворителя, называемое электроосмотическим потоком. Скорость электроосмотического потока зависит от электроосмотической подвижности, которая, в свою очередь, зависит от плотности заряда на внутренней стенке капилляра и свойств буферного раствора. В зависимости от заряда вещества электрофоретическая подвижность аналита и электроосмотическая подвижность могут быть направлены одинаково или противоположно. В условиях нормального капиллярного электрофореза анионы перемещаются в направлении, противоположном направлению электроосмотического потока, а их скорости меньше электроосмотической скорости. Катионы мигрируют в направлении, совпадающем с направлением электроосмотического потока, а их скорости превышают электроосмотическую скорость. В условиях, когда электроосмотическая скорость превышает электрофоретическую, катионы и анионы могут быть разделены в течение одного анализа.

Время (t), необходимое веществу для миграции на расстояние (/) от конца капилляра, в который вводится вещество, до точки детекции (эффективная длина капилляра), определяется выражением:

В общем, при рН более 3 капилляры с немодифицированной поверхностью, изготовленные из плавленого кварца, имеют отрицательный заряд, обусловленный ионизацией силанольных групп, расположенных на внутренней стенке капилляра. Соответственно, электроосмотический поток направлен от анода к катоду. Разделение двух полос (выражаемое как разрешение, Rs) может быть достигнуто при изменении электрофоретич. подвижности аналитов либо электроосмотической подвижности, а также при увеличении эффективности полосы для каждого аналита.

55.Масс-спетрометрия.Сочетание масс-спектрометрии с хроматографическими методами (ГХ-МС,ЖС-МС).Применение в фармацевтическом анализе.

Масс-спектрометрия основана на прямом измерении отношения массы к числу элементарных положительных или отрицательных зарядов ионов (m/z), полученных из анализируемого вещества и находящихся в газовой фазе. Данное отношение выражается в атомных единицах массы (1 а.е.м. = одной двенадцатой массы нуклида 12С) или в дальтонах (1 Да = массе атома водорода).

Ионы, образовавшиеся в ионном источнике, ускоряются и перед попаданием

в детектор разделяются с помощью масс-анализатора. Все эти действия

происходят в камере, в которой насосная система поддерживает вакуум от 10−3 до 10−6 Па.

Результирующий масс-спектр является графиком зависимости

относительного количества различных ионов от отношения m/z. Сигнал,

отвечающий иону, представлен несколькими пиками, соответствующими

статистическому распределению различных изотопов этого иона. Такой сигнал называется изотопным профилем, а пик (по крайней мере, для небольших молекул), представляющий наиболее распространённые изотопы для каждого атома, - моноизотопным пиком.

Масс-спектрометрический анализ даёт важную качественную (определение

молекулярных масс; информация, касающаяся структуры определяемых

фрагментов) и количественную (с использованием внешнего или внутреннего стандартов) информацию с пределом обнаружения от пикомоля до фемтомоля.

Первой стадией анализа является ввод образца в прибор без значительного

нарушения вакуума. В широко распространённом методе, называемом прямым вводом жидкости, образец помещается на конец цилиндрического штока (в кварцевом тигле, на проволоке или на металлической поверхности). Этот шток через вакуумный шлюз, в котором поддерживается первичный промежуточный вакуум между атмосферным давлением и вторичным вакуумом прибора, вводится в спектрометр.

Другие системы ввода позволяют проанализировать компоненты смеси, так

как они разделяются с помощью соответствующего прибора, соединённого с масс- спектрометром.

Газоваяхроматография/масс-спектрометрия. При использовании подходящих колонок (капиллярных или полукапиллярных) возможно непосредственное введение конца колонки в ионный источник прибора без сепаратора.

Жидкостнаяхроматография/масс-спектрометрия. Такая комбинация особенно полезна для анализа полярных соединений, которые являются недостаточно летучими либо слишком термолабильными, для того чтобы их можно было проанализировать методом газовой хроматографии в сочетании с масс-спектрометрией. Данный метод осложняется трудностью получения ионов в газовой фазе из жидкой фазы, что требует применения специальных интерфейсов, таких как:

- прямой жидкостный ввод: подвижная фаза распыляется и растворитель испаряется перед ионным источником прибора,

- интерфейс с пучком частиц: подвижная фаза, скорость которой может достигать 0,6 мл/мин, распыляется в десольватационной камере, в результате в ионный источник прибора попадают лишь анализируемые вещества в нейтральной форме; данный способ может быть использован для соединений с относительно низкой полярностью и молекулярными массами меньше 1000 Да,

- интерфейс с движущейся полосой: подвижная фаза, скорость которой может достигать 1 мл/мин, наносится на поверхность движущейся полосы; после выпаривания растворителя анализируемые вещества переносятся к ионному источнику прибора, где подвергаются ионизации; данный способ плохо подходит для очень полярных или термолабильных соединений.

Другие виды интерфейсов (электрораспыление, термораспыление, химическая ионизация при атмосферном давлении) могут рассматриваться как самостоятельные методы ионизации и описаны в разделе, посвящённом способам ионизации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]