Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан_шпоры.doc
Скачиваний:
40
Добавлен:
05.06.2015
Размер:
1.61 Mб
Скачать

1.Понятие первообразной и неопределенного интеграла. Свойства. Таблица интегралов.

Функция F(x) называется первообразной для функции f(х) на (a,b), если F(x) дифференцируема на (a,b) и F`(x)=f(x).

Произвольная первообразная для f(х) на (a,b) называется неопределенным интегралом от функции f (x)

Функция f (x) называется подынтегральной функцией, дифференциал f (x) dx – подынтегральным выражением, переменная x – переменной интегрирования, а C – постоянной интегрирования

Свойства:

1.d∫f(x)dx=f(x)dx

2. ∫dF(x)=F(x)+c

3. ∫Af(x)dx=A∫f(x)dx+c

4. ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx

5. ∫f(ax+b)dx=1/a F(ax+b)+c

Таблица интегралов.

  1. ∫0dx=c

  2. ∫ xαdx=, α ≠ –1

  3. , a

  4. +c

10.∫

11.∫

12.∫ – длинный логарифм

13.∫ - высокий логарифм

2. Методы замены и интегрирования по частям для неопределенного интеграла.

Метод замены переменной. ∫f(x)dx=∫f(φ(t))*φ`(t)dt; x=φ(t) – дифференцируемая функция.

Доказательство.

Метод интегрирования по частям. Пусть U(x) и V(x) дифференцируемые функции. Тогда по свойству дифференциала d(uv)=vdu+udv.

; .

3. Понятие определенного интеграла. Геометрический и экономический смысл определенного интеграла.

Опр. Предел интегральной суммы при λ→0, если он существует, называется определенным интегралом от функции f(x) на [a,b]. .

Геометрический смысл. Пусть f(x) неотрицательна на [a,b], тогда равен площади фигуры ограниченной сверху графиком функции f(x), снизу Ox.

Экономический смысл. Пусть Z=f(x) – производительность труда, тогда объем продукции, произведенный за время T будет равен .

4. Свойства определенного интеграла

1)

Док-во:

2)

Док-во:

3) a<c<b

4)

5)

Док-во: по свойству 4)

; ;

6) Теорема о среднем значении

Если f(x) непрер. на [a,b], то [a,b]:

Док-во: f(x) непрерыв. =>

;

7)

5. Определенный интеграл с переменным верхним пределом.

Ф(х)=; Xє[a;b], f(x) интегрирована на [a;b].

Теорема. Пусть f(x) непрерывна на [a;b]. Тогда хє[a;b] Ф`(x)=f(x).

Доказательство. Ф(х+∆х)=Ф(х)+f(ξ)∆x, ξє[x,x+∆x]

=f(ξ)

=

6. Формула Ньютона-Лейбница.

Теорема. Пусть f(x) непрерывна на [a;b]. F(x)-любая первообразная для f(x) на [a;b]. Тогда =F(b)-F(a)

Доказательство. Ф(х)=, Ф(х)-первообразная для f(x). F(x)=Ф(х)+c, c=const. F(b)-F(a)=(Ф(b)+c)-(Ф(a)+c)=Ф(b)-Ф(а)=-=.

Замена переменной в определенном интеграле, интегрирование по частям.

Теорема (замена переменных).Пусть φ(t) имеет непрерывную производную на [α;β], a=φ(α), b=φ(β), f(x) непрерывна х=φ(t), tє[α,β]. Тогда .

Доказательство. Пусть F(x) и Ф(х) первообразные для f(x) и f(φ(t))*φ`(t). Ф(t)=F(φ(t))+c, tє[α,β]. Ф(β)-Ф(α)=(F(φ(β))+c)-(F(φ(α))+c)=F(b)-F(a).

Теорема(интегрирование по частям). Пусть u=u(x) и v=v(x) имеют непрерывную производную на [a,b]. Тогда |.

Доказательство. |=

7. Применение определенного интеграла к вычислению:

  • площади криволинейной фигуры Площадь фигуры, ограниченной графиками непрерывных функций y=f1(x) и y=f2(x), f1(x)≤f2(x) и двумя прямыми x=a и x=b определяется по формуле

  • длины дуги Если гладкая кривая задана уравнением y=f(x), то длина ее дуги равна где a и b – абсциссы концов дуги

  • объема тела вращения Объем тела вращения, ограниченного поверхностью вращения кривой f(x) вокруг оси Ox и плоскостями x=a, x=b вычисляется по формуле Если вращение вокруг оси Oy кривой x=g(y) то

  • площади поверхности вращения Площадь поверхности, образованной вращением вокруг оси Ox дуги кривой, заданной функцией y=f(x), axb, вычисляется по формуле

8. Несобственные интегралы. Критерий Коши сходимости несобственного интеграла.

Пусть f(x) непрерывна на любом отрезке . Тогда

называется несобственным интегралом I рода. Если предел существует и он конечен, то несобственный интеграл сходящийся; если предел не существует или он бесконечен то интеграл расходящийся.

Если f(x) непрерывна на любом отрезке , . Тогда называется несобственным интегралом II рода. Если предел существует и он конечен, то несобственный интеграл сходящийся; если предел не существует или он бесконечен то интеграл расходящийся.

Несобственные интегралы I и II рода называются интегралом с единственной особенностью.

Критерий Коши сходимости несобственных интегралов:

Для сходимости несобственного интеграла с единственной особенностью в точке b необходимо и достаточно чтобы.

Доказательство.

Рассмотрим функцию , a<x<b. По критерию Коши для предела функции , чтд

9. Несобственные интегралы. Признаки сравнения.

1). Интеграл по бесконечной области

f(x,y) непрерывна в бесконечной области D , где D’- конечная область лежащая в D, кот. расширяется произвольным образом. Если существует конечный предел, не зависящий от выбора области D’ и способа расширения, то несобственный интеграл называется сходящимся.

2). Интеграл от разрывной функции

Пусть f(x,y) непрерывна в огр. замкнутом D всюду, за исключением P0(x0,y0).

Если существует конечный предел , где De – это область D с вырез. E-окружностью точки P0, то этот предел называется несобственным интегралом от функции f(x,y) по области D.

Интеграл Пуассона

Признак сравнения.

Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при х ≥ a удовлетворяют неравенствам 0 ≤ f(x) ≤ g(x). Тогда: если сходится интеграл , то сходится интеграл ; если расходится интеграл , то расходится интеграл

Док-во:

если 0≤f(x) , 0≤g(x), то функции и - монотонно возрастающие функции верхнего предела b. Монотонно возрастающая функция имеет конечный предел тогда и только тогда, когда она ограничена сверху. Пусть сходится. G(b) ограничена , F(b) ограничена, т.е. сходится. Пусть расходится F(b) неограничена G(b) неограничена, т.е. расходится.

Признак сравнения в предельной форме.

Пусть неотрицательные функции f(x) и g(x) интегрируемы по любому отрезку [a, b] и пусть существует конечный . Тогда несобственные интегралы и сходятся или расходятся одновременно. Док-во.

Так как функции неотрицательны, то K > 0. По определению предела для существует такое значение x0, что при x > x0 выполняется . Дальше рассуждения простые: пусть a1 = min{a, x0}; если сходится , то сходится , тогда, по теореме сравнения, сходится сходится сходится. Если расходится , то расходится , тогда, по теореме сравнения, расходится расходитсярасходится. Случаи, когда сходится или расходится , рассмотреть самостоятельно. Сравнение интеграла со "стандартным" интегралом в предельной форме позволяет сформулировать такое правило: если при неотрицательная функция f(x) - бесконечно малая порядка малости выше первого по сравнению с , то сходится; если f(x) не является бесконечно малой или имеет порядок малости единица или ниже, то интеграл расходится.

10. Несобственные интегралы c особенностями в нескольких точках.

Разобьем инт (а,б) так, чтобы интегралы на каждом интервале разбиения имели единств. особенность.

Опр: Если все несобственные интегралы на интервале разбиения сходились, то интеграл назывался сходящимся.

Если хотя бы 1 из интегралов расходится, то расход.

расход сход

Интегральный признак сходимости числовых рядов.

Если функция непрерывна и не возрастает на то сходятся или расходятся одновременно.

Док-во:

По теореме о среднем.

Если сходящ., то органичен сверху => сходящ.

Если интеграл сход., то и числ. ряд сходится(левое нер-во).

11. Функции многих переменных

Рассмотрим множество E всех упоряд пар чисел (х,у). Если каждой паре приведено в соответств число Z в силу некотор закона то говорят, что на множ-ве Е определена функция Z=f(x,y). График изображается нек поверхностью в 3х мерном прост-ве

Линии уровня Z=f(x,y) это линия f(x,y)=C, C=const на плоскости (х,у)в которой функция сохраняет постоянное значение С.

Понятие окрестности на плоскости

Мн-во т(х,у) : (х-х0)2+(у-у0)2<a2 назыв открытым радиуса а с центром (х00)

Мн-во т(х,у) : |х-х0|<a , |у-у0|<b (a,b>0) назыв открыт прямоугольником

Любой открытй круг радиуса ε>0 или открытый квадрат со стороной 2ε с центром в (х00)

Называется ε-окрестностью т (х00)

Предел последовательности

Пос-ть {(xk,yk)}->т(х00) при к->беск, если ->0 или для любого ε>0 сущn0 принадл N : для люб k> n0 т(хk,уk) нах в ε-окрестности т(х00)

Предел функции

По Коши: lim( x->x0, y->y0) f(x,y)=A если f(x,y) определена в нек окрес-ти т(х00) за исключением быть может самой этой точки. И для любого ε>0 сущ δ>0 :

|f(x,y)-A|<ε для любых х,у: 0<

По Гейне: lim( x->x0, y->y0) f(x,y)=A если f(x,y) определена в нек окрес-ти т(х00) за исключением быть может самой этой точки и lim( xк->x0, yк->y0) f(xк,yк)=A

Предел функции по направлению

Пусть (ωх,ωу): ,произвольный единичный вектор вида (х0+tωx, y0+tωy), t>0 образуют луч выходящий из точки (х00) в направлении.Lim(t->0) f(х0+tωx, y0+tωy) назыв пределом функции f(x,y) в т(х00) в направлении

Свойства предела функции двух переменных

1 lim( x->x0, y->y0) (f(x,y)+- g(x,y))= lim( x->x0, y->y0) f(x,y) +- lim( x->x0, y->y0) g(x,y)

2 lim( x->x0, y->y0) (f(x,y)* g(x,y))= lim( x->x0, y->y0) f(x,y) * lim( x->x0, y->y0) g(x,y)

3 lim( x->x0, y->y0) (f(x,y)/ g(x,y))= lim( x->x0, y->y0) f(x,y) / lim( x->x0, y->y0) g(x,y)0

Теорема о сохранении знака предела. Если функция f(x,y) имеет предел в точке (х0,y0) то существует δ>0: для любого х,у: 0<< δ |f(x,y)|>|A|/2 и функция сохраняет знак числа А в δ окрестности. Док-во: пусть ε=|A|/2>0

Существ δ>0 | f(x,y)-A|<|A|/2

|A|/2>|A- f(x,y)|>=|A|-| f(x,y)|

| f(x,y)|>|A|-|A|/2=|A|/2

f(x,y)>A/2 при A>0

f(x,y)<A/2 при А<0

12. Непрерывность в точке функции двух переменных

f(x,y) непр в (х0; y0) если она определена в нек окр-ти этой т., в том числе и в самой этой т.

Если lim(x->x0, y->y0) f(x,y)=f(x0, y0)

Замечание: lim(∆x->x0, ∆y->y0) f(x0+∆x, y0+∆y)=f(x0, y0)

Свойства функций непрерывных в точке(1арифметические,2непрерыв сложн функции, 3сохранение знака)

1 f(x,y), g(x,y) непр в (x0, y0), тогда f+-g, f*g, f/g(g x0, y0)0) непр в (x0, y0)

2 f(x,y) непр в (x0, y0), x=φ(u,v),y=ψ(u,v) непр в (u0,v0).Тогда f(φ(u,v), ψ(u,v)) непр в (u0,v0)

3 f(x,y) непр в (x0, y0), f(x0, y0) 0.Тогда f(x,y) сохр знак числа f(x0, y0) в нек окр-ти (x0, y0).

Опр.Частная производная от фун. f(x,y) по х в точке (х,у).

f(штрих)x=df/dx=lim(h->0)f(x=h,y)-f(x,y)/h

Частная производная от фун. f(x,y) по y в точке (х,у).

f(штрих)x=df/dy=lim(h->0)f(x,y+h)-f(x,y)/h

f(штрих)x(x0,y0)-это тангенс угла наклона к Ох касательной сечения поверхности z=f(x,y)плоскости y=y0 в точке с абсциссой x0.

Опр.Смешаная f’’yx=d^2f/dxdy=d/dy;f’’xy=d^2f/dydx=d/dx

Теорема:Пусть f(x,y) определена вместе со своими частными произв. df/dx,df/dy,d^2f/dxdy,d^2f/dydx в некоторой окрест. точки (х0,у0), причём смешанная произв. 2-ого порядка непрерыв. в точке (х0,у0) тогда d^2(x0,y0)/dxdy=d^2f(x0,y0)/dydx.

Понятие дифференцируемости для функции многих переменных.

Теорема:Если фун. f(x,y,z) имеет непрерыв. частн. произв. в точках (x,y,z) то её приращение в этой точке можно записать в виде f=df/dxx+df/dyy+df/dzz+0(ρ); ρ=(x2+y2).

Теорема:(Необх и дост усл.)Для того чтобы фун. f была дифф. в точке необх. чтобы она имела в этой точке частн. произв. и дост. чтобы она имела в этой точке непрер. частн произв.

Следств:Если фун. дифф. в точке, то она непрер в этой точке.

Дифференциал:Главная линейная часть приращения диффер. фун. f(x,y,z) назыв. дифференциалом этой точке соотв. приращ. независимых переменных и обозначенных df=df/dx x+df/dyy+df/dzz(для f(x,y,z)).

14.Дифференцирование сложной функции.Теорема:Пусть фун. u=f(x,y,z) диффер. в (x,y,z) некоторого мн-ва фун. x=x(f),y=y(f),z=z(f) имеет произв. в точке f.du/dt=df/dx*dx/dt+df/dy*dy/dt+dt/dz*dz/dt.

Теорема:Фун. u=f(x,y,z)диффер. в т. (x,y,z,),x=x(t,z),y=y(t,z)z=(t,z).Тогда du/dz=df/dx*dx/dt+df/dy*dy/dt+dt/dz*dz/dt.

Билет 15. Производная по направлению. Градиент.

Теорема:

Если f(x,y,z) дифференцируема в т.(x,y,z), то производная функции по направлению единичного вектора n(cos α, cos β, cos γ):

∂f/∂n=∂f/∂x * cos α + ∂f/∂y * cos β + ∂f/∂z * cos γ; где α, β, γ – углы между n и положительным направлением Ox, Oy, Oz.

Доказательство:

По определению производной по направлению:

∂f/∂n = lim((f(x-tcosα, y+tcosβ, z+tcosγ)-f(x,y,z))/t) = d/dt f(x+tcosα, y+tcosβ, z+tcosγ)|0 =

= ∂f/∂x * cosα + ∂f/∂y * cosβ + ∂f/∂z * cosγ (по формуле производной сложной функции)

Градиентом функции f(x,y,z) в т. М(x,y,z) называется вектор с началом в т. М и координатами ∂f(M)/∂x, ∂f(M)/ ∂y, ∂f(M)/ ∂z.

gradf = ∂f(M)/∂x * i + ∂f(M)/ ∂y * j + ∂f(M)/ ∂z * k. (i,j,k - векторы)

Производная по направлению n:

∂f/∂n = (gradf, n) - скалярное произведение.

∂f/∂n – проекция вектора gradf на вектор n, то есть ∂f/∂n ≤ |gradf|

Градиент указывает направление наискорейшего роста функции в данной точке.

16. Дифференциалы высших порядков. Формула Тейлора для функции многих переменных.

z = f(x,y)

dz = (∂z/∂x)dx + (∂z/∂y)dy – дифференциал 1-го порядка.

Диф-циал 2-го порядка – диф-циал функции от 1-го диф-циала:

d2z = d(dz)

Аналогично для 3-го порядка и так далее (d3z = d(d2z), …)

Если функция имеет непрерывные частные производные, то дифференциалы высших порядков вычисляются по формулам:

d2z = (∂2z/∂x2)dx2 + 2(∂2z/∂x∂y)dxdy + (∂2z/∂y2)dy2

d3z = (∂3z/∂x3)dx3 + 3(∂3z/∂x2∂y)dx2dy + 3(∂3z/∂x∂y2)dxdy2 + (∂3z/∂y3)dy3

dnz = ((∂/∂x)dx + (∂/∂y)dy)nz

Формула Тейлора:

Пусть функция f(x.y) имеет все частные производные до n-го порядка в окрестности т. Р(x0,y0)

Точка Р1(x0 + ∆x, y0 +∆y) лежит в окрестности т. Р. Соединим т. Р и Р1 отрезком:

x = x0 + t∆x 0 ≤ t ≤ 1

y = y0 + t∆y - это типа система

F(t) = f(x0 + t∆x, y0 + ∆y)

Рассм ф-цию F(t)=f((x0+Δx,y0+Δy). Ф-ла Маклорена для F(t): F(t)=F(0)+(F’(0)t)/1!+(F”(0)t2)/2!+…+(F(n-1)(0)tn-1)/(n-1)!+(Fn(θ)tn)/n!, 0<θ<t F’(t)= При t=0 F’(0)=dF(P); F”(0)=d2F(P) и тд. Итак ф-ла Тейлора для ф-ции 2ух перемен: Δf(P)=df(P)/1!+d2f(P)/2!+…+1/n!*dnf(x0+θΔx,y0+θΔy).