Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции летные испытания АТ.doc
Скачиваний:
4186
Добавлен:
27.03.2015
Размер:
7.15 Mб
Скачать

Влияние состояния атмосферы на эксплуатационные характеристики.

Оно проявляется разнообразно. Высокие и низкие температуры могут привести к дополнительным работам при подготовке к полету. Встречный ветер приводит к увеличению времени полета и к снижению дальности. Облачность, осадки, запыленность приводят к понижению видимости и затрудняют обнаружение воздушных и наземных целей, фотографирование. Повышенная наэлектризованность атмосферы, гроза неблагоприятно влияет на работу радиосвязных и радионавигационных систем. Болтанка, вызванная турбулентностью окружающего воздуха, снижает уровень комфорта для пассажиров.

Влияние состояния атмосферы на безопасность полета

Большое влияние могут оказывать метеоусловия на безопасность полета. Боковой ветер затрудняет заход на посадку и выдерживание курса на ВПП, Повышенная влажность, осадки могут привести к попаданию воды в самолет и вызвать сбои в бортовом оборудовании. Осадки, облачность, запыленность уменьшают видимость и затрудняют взлет и посадку, плохая видимость при посадке является одной из наиболее часто встречаемых причин авиакатастроф. Попадание в зоны с высокой турбулентностью, характерные для мощной грозовой облачности, может привести как к непосредственной деформации или поломке самолета, так и выходу самолета на нерасчетный режим полета. Попадание в обледенение или грозу усложняет пилотирование и может привести к аварии или катастрофе.

4. Характеристики метеорологических элементов и метеорологических явлений. Температура.

Температура воздуха, как известно, является мерой скорости движения молекул. Основой теплового состояния атмосферы является солнечное излучение. При этом 14% излучения непосредственно поглощается атмосферой, 44% поглощается земной поверхностью и от нее тепло передается атмосфере (оставшиеся 42% излучения отражаются).

Эта передача тепла от земной поверхности в атмосферу осуществляется путем следующих основных процессов: 1) термической конвекции, 2) турбулентности, 3) излучения.

Термическая конвекция представляет собой вертикальный подъем воздуха, нагретого над отдельными участками земной поверхности. Наиболее сильное развитие термической конвекции наблюдается в дневные (послеполуденные) часы, т. е. в период наибольшего притока солнечной радиации. Термическая конвекция может распространяться до верхней границы тропосферы, осуществляя теплообмен во всей толще тропосферного воздуха.

Турбулентность представляет собой бесчисленное множество мелких вихрей, возникающих в движущемся воздушном потоке благодаря его трению о земную поверхность и внутреннему трению частиц.

Турбулентность способствует перемешиванию воздуха, а следовательно, и обмену тепла между нижними (нагретыми) и верх­ними (холодными) слоями воздуха. Турбулентный обмен тепла наблюдается в приземном слое до высоты 1—1,5 км.

Излучение представляет собой отдачу земной поверхностью тепла, полученного ею в результате притока солнечной радиации. Нагретая земля излучает в тепловой части спектра, и эти тепловые лучи поглощаются атмосферой, вследствие чего происходит повышение температуры воздуха и охлаждение земной поверхности. Более нагретые слои воздуха в свою очередь излучают тепло к менее нагретым слоям. Процесс излучения имеет место ночью, а зимой может наблюдаться в течение всех суток.

Главную роль в передаче тепла от земли в атмосферу играет термическая конвекция и турбулентность.