Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экол.гальванопроизводств vinogradov_03.docx
Скачиваний:
361
Добавлен:
12.03.2015
Размер:
1.03 Mб
Скачать

Метод электролиза находит применение и для обезвреживания циансодержащих сточных вод и отработанных растворов с концентрацией цианидов более 200 мг/л. Очистку воды от цианидов проводят в бездиафрагменных открытых электролизерах непрерывного или периодического действия. В качестве анодов используют графитированный уголь в виде плит или стержней по ГОСТ 11256-73 или магнетит и РЬОг на титановой основе. Анодная плотность тока 0,5-2 А/дм2. Катоды - из легированных сталей.

промывная вода

1 Вода 1 на доочистку

металл

>

на утилизацию

Рис.4.12. Принципиальная схема электролитической очистки:

1-сборник промывной воды, 2-насос, 3-электролизер, 4-выпрямитель.

При электролизе на аноде в щелочной среде происходит электрохимическое окисление CN- -ионов и комплексных анионов типа [Cu(CN)3]2-, [Zn(CN)4]2-:

CN- + 20Н- - 2е CNO' + ШО

[Cu(CN)3]2- + 60Н- - 6е Cu2+ + 3CNO- + ЗНгО

2CNO- + 40Н- 2СОг t + N21 + 2НгО + 6е

CNO- + 2НгО NH4+ + СОз2-

40Н" - 4е —> 2НгО + Ог Т

На катоде происходит образование водорода при разряде ионов Н+:

+ + 2е Нг Т

210

или осаждение металлов при разряде ионов [Cu(CN)2]-, образующихся при диссоциации комплексных ионов [Cu(CN)3]2-:

[Cu(CN)3]2- [Cu(CN)2]- + CN- [Cu(CN)2]- + e -> Cu° + 2CN-

Для повышения электропроводности очищаемых сточных вод, снижения расхода электроэнергии, интенсификации процесса окисления цианидов добавляют NaCl в количестве 5-10 г/л, при электролизе которого образуется активный хлор (гипохлорит натрия), участвующий в процессе окисления цианидов:

2С1- - 2е -> С12 С12 + CN- + 20Н- -> CNO- + 2С1- + Н20

Реакция среды рН> 11, температура не более 40-50 °С, объёмная плотность тока 1-3 А/л, продолжительность обработки 20- 30 мин. Удельный расход электроэнергии 40 кВт-ч/м3.

Преимуществами данного метода при обезвреживании циансодержащих сточных вод (по сравнению с реагентными) являются: компактность установки; простота эксплуатации; возможность автоматизации; степень очистки от цианидов практически 100 %-ная; утилизация металлов из сточных вод до 80 % (остальная часть металлов удаляется в виде гидроокисей); возможность обработки высоко концентрированных растворов. В качестве недостатков можно отметить загрязненность очищенных стоков активным хлором до 200 мг/л и невозможность интенсификации процесса путем повышения температуры реакционной среды.

  1. Адсорбционный метод

Сорбцией называют процесс поглощения твердым телом или жидкостью (сорбентом) какого-либо вещества из окружающей среды. Различают три основные разновидности сорбции - адсорбцию, абсорбцию и хемосорбцию.

Адсорбция - поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела или жидкости (адсорбента).

211

Абсорбция - поглощение какого-либо вещества из окружающей среды всей массой поглощающего тела (абсорбента). Абсорбция жидким абсорбентом какого-либо вещества из газовой смеси называется растворением. Абсорбция жидким абсорбентом какого-либо вещества из жидкой смеси называется экстракцией.

Хемосорбция - поглощение вещества поверхностью какого- либо тела (хемосорбента) в результате образования химической связи между молекулами вещества и хемосорбента.

Адсорбцию широко применяют для глубокой очистки сточных вод от растворенных органических веществ после биологической очистки, значительно реже - для очистки от ионов тяжелых металлов. Использование адсорбции для удаления гетерогенных примесей экономически не оправдано и не практикуется. Блок адсорбционной очистки, как правило, включают в схему на заключительной стадии обезвреживания воды, когда из неё отстаиванием, фильтрацией, коагуляцией уже удалена основная масса взвешенных частиц, эмульгированных смол и масел, и вода освобождена от крупных мицелл коллоидных систем.

Адсорбционная очистка эффективна во всем диапазоне концентраций примесей в воде, однако более всего её преимущества сказываются на фоне других методов очистки при низких концентрациях загрязнений. Основные области применения адсорбционных процессов в очистке воды - подготовка питьевой воды и доочистка сточных вод.

При адсорбции из растворов происходит поглощение адсорбентом как молекул загрязнения так и воды. Кроме того при очистке водных растворов происходит конкуренция двух видов межмолекулярных взаимодействий: гидратация молекул загрязнителя, т.е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул загрязнителя с адсорбентом.

Конкуренция процессов гидратации и адсорбции молекул загрязнителя и адсорбции молекул воды лежит в основе разграничения сорбентов для удаления из воды органических и неорганических веществ. Для адсорбции органических веществ применяют углеродные пористые материалы - активные угли, дробленые материалы различного органического происхождения: уголь, кокс, топливные шлаки, сорбенты на основе целлюлозы и резины, синтетические полимеры. Полярные гидрофильные материалы - иониты, глины, силикагели, алюмогель, цеолиты,

212

оксиды и гидроксиды для адсорбции органических веществ малопригодны, так как величина энергии взаимодействия их с молекулами воды равна величине энергии сорбции молекул органических загрязнений или превышает её. Эти гидрофильные материалы используют для удаления из воды неорганических соединений, присутствующих в ней, как правило, в ионной форме.

Наиболее универсальными из адсорбентов являются активированные угли. С их помощью возможно практически полное удаление из растворов почти всех органических соединений, а при определенных условиях и эффективная очистка воды от некоторых токсичных ионов неорганических веществ, в том числе ионов тяжелых металлов. Сорбционная емкость активированного угля по отношению к ионам тяжелых металлов значительно повышается в том случае, если уголь гранулируется, а затем на его поверхность наносится активный компонент, состоящий из тиолтриазинового производного. Для приготовления такого адсорбента гранулированный активированный уголь перемешивают в растворе или суспензии тиолтриазинового производного и доводят pH смеси до величины >3 в водной фазе.

В качестве сорбента для извлечения ионов тяжелых металлов из сточных вод гальванических производств предлагается также использовать силикатный адсорбент, содержащий более 50 мас.% SiCh, например природный или синтетический цеолит. Обработку сточных вод проводят добавлением в неё цеолита при рН=5-9, образовавшийся осадок отделяют и высушивают. Вес адсорбента в осадке составляет 10-50 мас.%. Перед обработкой сточных вод цеолит хорошо измельчают для увеличения поверхности его контакта с жидкостью.

Для извлечения простых или комплексных ионов тяжелых металлов из сточных вод можно использовать адсорбент, получаемый путем нагревания органического гумуса (предпочтительно смешанного с поливинилацетатом или желатином) при 200-250 °С в течение 1 ч в присутствии формальдегида или его производных (параформальдегида, гексаметилентетрамина и др.). В качестве источника органического гумуса предлагается использовать продукт ферментативного разложения избыточного активного ила, образующегося в результате биохимической очистки сточных вод. Поливинилацетат или желатин от 1 до 50 мас.ч. на 100 мас.ч. гумуса являются

213

связующими компонентами. Формальдегид или его производные используются в количестве 0,1-10 мас.ч. на 100 мас.ч. гумуса, причем наиболее предпочтительно применять их в виде водного раствора.

Удаление солей тяжелых металлов из сточных вод может быть осуществлено при смешении этих вод с порошкообразным неорганическим материалом и ПАВ с последующим обжигом полученной смеси при 1000-1300 °С. В качестве порошкообразного неорганического материала может быть использована глина, тальк или каолин. В результате такой обработки образуется твердый продукт, не выделяющий тяжелых металлов при выщелачивании. Так, водный раствор, содержащий 100 мг/л хрома (VI), обрабатывают смесью, состоящей из 93-94 мас.% глины, 5 мас.% бентонита (в качестве связующего) и 1-2 мас.% ПАВ. После фильтрации и сушки при комнатной температуре твердый продукт покрывают глазурью и подвергают обжигу при 1230 °С в электропечи. Полученный материал не выделяет хрома при контакте с водой.

В качестве адсорбента для очистки промывных хром содержащих вод предложено использовать фильтр с активированным углем. Сточные воды предварительно подкисляются до pH 1,5-2,0. Скорость фильтрации и pH среды меняются в зависимости от содержания Сг6+ и составляют соответственно 7 м/ч и pH 2 при концентрации Сг6+ до 5 мг/л и 0,1 м/ч и pH 1 при концентрации Сг6+ до 150 мг/л. Регенерацию адсорбента производят раствором серной кислоты. При регенерации адсорбента 15 %-ным раствором NaOH элюат содержит ион СЮ42' в виде Na2Cr04. После регенерации адсорбент отмывают водопроводной водой до pH 7-8.

Калифорнийским технологическим институтом (США) запатентован магнитный сорбент для удаления ионов тяжелых металлов, а также анионов, таких как нитраты, фосфаты, бораты, фториды. Сорбент представляет собой гранулы магнетита, покрытые тонким слоем полисахарида, например хитозана. Хитозан является отходом переработки устриц, крабов, омаров, раков. Для приготовления сорбента хитозан растворяют в разбавленной НС1 при pH 1-3 и к полученному раствору добавляют FeCh, а затем щелочь до pH 8-9. В результате образуются гранулы Рез04, покрытые слоем затвердевшего хитозана. Содержание железа в сорбенте 90 и более мас.%, размер полученных гранул от 100 до 1000

214

Ангстрем. Хитозан образует хелатные соединения с ионами тяжелых металлов и анионами при диспергировании сорбента в сточных водах и перемешивании в течение 1 ч. После этого сорбент может быть удален из сточных вод осаждением в магнитном поле.

Очистка сточных вод на гранулированных сорбентах проводится в адсорберах с плотным, взрыхленным, движущимся и псевдоожиженным слоем. Одно- и многослойные адсорберы с плотным слоем гранулированного активного угля работают с восходящим и нисходящим потоками воды, по параллельной и последовательной схемам.

Сорбцию загрязнений на пылевидных сорбентах ведут либо в аппаратах с перемешиванием воздухом или мешалкой, либо на намывных фильтрах. Во всех случаях могут применяться одна или несколько последовательных ступеней с неограниченным числом параллельных технологических линий.

На рис. 4.13 представлена принципиальная схема адсорбционной очистки сточных вод.

кислота

стоки

очищенная вода

шлам

Рис. 4.13. Принципиальная схема сорбционной очистки сточных вод:

1-накопитель стоков, 2-насос, 3-механический фильтр, 4-адсорбер, 5-дозатор кислоты (pH 1,5-2,0 для очистки от ионов хрома).