Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gosy.docx
Скачиваний:
15
Добавлен:
12.03.2015
Размер:
346.86 Кб
Скачать

Вопрос 39

Спектры рассеивания. Нефелометрия, турбидиметрия.

Ответ:

Спектры рассеивания позволяют судить о структуре и фазовом составе объекта, не повреждая исследуемый образец.

Спектры рассеивания каждого соединения настолько специфичны, что могут служить для идентификации этого соединения и обнаружения его в смесях. Качественный и количественный анализ по спектрам рассеивания широко применяют в аналитической практике, особенно при анализе смесей углеводородов. Спектры комбинационного рассеивания весьма эффективны для идентификации самых разнообразных продуктов и материалов как органической, так и неорганической природы.

Спектры рассеивания являются одним из случаев молекулярных спектров, в которых проявляется наноструктура вещества – строение и состав образующих его молекул. Изучение спекторов рассеивания позволяет получать информацию о динамике вещества на наномасштабном уровне.

Нефелометрия - это метод исследования и анализа вещества по интенсивности светового потока, рассеиваемого взвешенными частицами данного вещества.

Интенсивность рассеянного светового потока зависит от множества факторов, в частности от концентрации частиц в анализируемой пробе. Большое значение при нефелометрии имеет объём частиц, рассеивающих свет. Важное требование к реакциям, применяемым при нефелометрии, заключается в том, что продукт реакции должен быть практически нерастворим и представлять собой суспензию (взвесь). Для удержания твёрдых частиц во взвешенном состоянии применяются различные стабилизаторы (например, желатин), предотвращающие коагуляцию частиц.

Для измерения интенсивности рассеянного света используются специальные приборы — нефелометры. Их действие основано на уравнивании двух световых потоков: одного от рассеивающей взвеси, другого от матового или молочного стеклянного рассеивателя прибора. Один из вариантов нефелометрии — нефелометрическое титрование, в котором раствор анализируемого вещества титруют раствором осадителя. В процессе титрования интенсивность рассеянного света увеличивается пропорционально количеству образующихся частиц. В точке эквивалентности рост помутнения прекращается. По излому кривой титрования находят объём затраченного на реакцию осадителя. Погрешность при этом составляет от 5 до 10 %.

Турбидиметрия – метод количественного химического анализа. Основан на измерении интенсивности света, прошедшего через суспензию, образованную частицами определяемого вещества в жидкой фазе. Из-за малой точности турбидиметрия используется только для определения компонентов, для которых нет удовлетворительных фотометрических и других методов анализа.

Метод очень похож на метод нефелометрии, однако в отличие от него, аналитическим сигналом служит интенсивность не рассеянного света, а прошедшего.

Вопрос 40

Радиоспектроскопические методы исследования (ЯМР, ЭПР).

Ответ:

Радиоспектроскопические методы исследования - это совокупность методов исследования строения вещества, а также физических и химических процессов в нём, основанных на резонансном поглощении радиоволн. Радиоспектроскопия изучает вещество в твёрдом, газообразном и жидком состояниях. Ряд исследований структуры атомов и молекул осуществлен с помощью молекулярных и атомных пучков, когда взаимодействие между частицами практически отсутствует.

Научные исследования в области радиоспектроскопии, включают в себя следующие две части: изучение некоторых неравновесных магнитных процессов, а именно, процессов магнитного резонанса и релаксации, и использование закономерностей этих процессов для разработки методов исследования внутренних свойств и движений макроскопических физических систем; эти методы оказываются весьма эффективными не только в макрофизике, но и в технике (обычно радиоспектроскопией называют только разработку и разнообразные применения этих методов).

Ядерный магнитный резонанс (ЯМР) — резонансное поглощение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер.

Явление магнитного резонанса было открыто в 1945—1946 гг. двумя независимыми группами ученых. Вдохновителями этого были Ф. Блох и Э. Пёрселл.

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем номинальная частота резонанса (и прибора).

Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом постоянного поля (CW).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

Электронный Парамагнитный Резонанс (ЭПР) — спектроскопический метод изучения вещества, открытый Завойским Евгением Константиновичем в Казанском государственном университете в 1944 г.

Суть явления электронного парамагнитного резонанса заключается в следующем. Если поместить свободный радикал с результирующим моментом количества движения в магнитном поле с напряженностью, то в магнитном поле снимается вырождение, и в результате взаимодействия с магнитным полем возникает уровень, положение которого определяется Зеемановским взаимодействием магнитного поля с магнитным моментом.

Метод ЭПР даёт уникальную информацию о парамагнитных центрах. Он однозначно различает примесные ионы, изоморфно входящие в решётку от микровключений. При этом получается полная информация о данном ионе в кристалле: валентность, координация, локальная симметрия, гибридизация электронов, в сколько и какие структурные положения он входит, ориентирование осей кристаллического поля в месте расположения этого иона, полная характеристика кристаллического поля и детальные сведения о химической связи. И, что очень важно, метод позволяет определить концентрацию парамагнитных центров в областях кристалла с разной структурой.

Но спектр ЭПР это не только характеристика иона в кристалле, но и самого кристалла, особенностей распределения электронной плотности, кристаллического поля, ионности-ковалентности в кристалле и наконец просто диагностическая характеристика минерала, так как каждый ион в каждом минерале имеет свои уникальные параметры. В этом случае парамагнитный центр является своеобразным зондом, дающий спектроскопические и структурные характеристики своего микроокружения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]