Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 1.doc
Скачиваний:
152
Добавлен:
15.02.2015
Размер:
982.02 Кб
Скачать

Горизонтальный полет

Под режимом горизонтального полета понимается устано­вившееся прямолинейное движение вертолета с постоянной скоростью без набора высоты и снижения.

Для перевода вертолета из набора высоты в горизонталь­ный полет необходимо, не меняя режима работы двигателей, отклонением ручки управления от себя установить заданную скорость, а затем рычагом ШАГ-ГАЗ подобрать режим работы двигателей, соответствующий заданной скорости горизонталь­ного полета. Частота вращения несущего винта при этом авто­матически поддерживается в пределах 95 ±1%. После перево­да вертолета в режим горизонтального полета появляющиеся усилия на ручке управления снять триммерами.

О правильности подбора режима работы двигателей для горизон-тального полета на заданных скорости и высоте полета можно судить по показаниям указателя скорости и вариомет­ра. Если при заданной скорости полета стрелка вариометра находится около нулевого положения, режим работы двигате­лей подобран правильно. Если же при заданной скорости по­лета стрелка вариометра показывает спуск, то летчик должен рычагом ШАГ-ГАЗ несколько увеличить мощность двигателей, а отклонением ручки управления на себя увеличить угол тан­гажа. Когда при заданной скорости полета вариометр показы­вает подъем рычагами управления, следует действовать в об­ратном порядке.

После того как будет подобран режим работы двигателей рекомендуется запомнить положение остекления кабины относительно линии естественного горизонта и сохранять его соответствующими отклонениями рычагов управления, периодичес­ки контролируя режим полета по авиагоризонту, вариометру и указателю скорости. Это облегчит пилотирование вертолета в визуальном полете.

Горизонтальный полет вертолета в зависимости от высоты полета разрешается производить при взлетной массе 13000 и 11 100 кг (для Ми-8Т при взлетной массе 12000 и 11000 кг) в диапазоне скоростей по прибору, указанных в табл. 1.

На рис. 15 показана схема сил, действующих на вертолета горизонтальном полете.

Рис. 15.Схема сил, действующих на вертолет в горизонтальном полете

Сила тяжести вертолета Gв горизонтальном полете долж­на быть уравновешена вертикальной составляющейYтяги не­сущего винта. Этим обеспечивается сохранение постоянства высоты полета. Чтобы скорость полета была постоянной, сила вредного сопротивления Qвр должна быть равной горизонталь­ной составляющейРтяги несущего винта. Равенство реактив­ного момента Мр несущего винта моменту от тяги рулевого винта Трвlрв является условием сохранения прямолинейности полета.

Известно, что с увеличением скорости полета потребная тяга увеличивается. Объясняется это ростом вредного сопро­тивления вертолета (оно изменяется пропорционально квадра­ту скорости). Для уравновешивания силы вредного сопротив­ления потребуется увеличить горизонтальную составляющую тяги несущего винта. А этого можно достигнуть только за счет увеличения общей тяги несущего винта, так как при наклоне ее вперед (для увеличения горизонтальной составляющей) вертикальная составляющая У должна оставаться равной си­ле тяжести вертолета.

Располагаемая тяга с увеличением скорости полета до эко­номической вследствие увеличения секундного расхода возду­ха, проходящего через несущий винт, растет. При дальнейшем увеличении скорости из-за расширения зоны обратного обтекания и усиливающегося срыва потока воздуха с концов отсту­пающих лопастей несущего винта в азимуте 270° располагае­мая тяга падает. В результате этого потребная мощность при увеличении скорости до экономической Vэк будет уменьшаться, а при дальнейшем росте скорости увеличиваться.

График располагаемой и потребной мощностей показан на рис. 16.

Рис.16. График располагаемой и потребной мощностей горизонтального полета

Скорость полета, при которой располагаемая мощность равна потребной Nгп (избыток мощности отсутствует), называ­ется максимальной Vмакс. Однако максимальная скорость горизонтального полета, как правило, ограничивается срывом воздушного потока, возникающим на отступающей лопасти несущего винта. Первоначальное возникновение срыва прояв­ляется в сильной тряске всего вертолета. В дальнейшем с уве­личением скорости полета зона срыва быстро увеличивается, что приводит к потере управляемости.

Нарушение плавности обтекания лопасти несущего винта воздушным потоком (срыв потока) наступает на определенной скорости полета, при которой вследствие движения лопастей истинные углы атаки лопасти, идущей назад, достигают кри­тического значения. Чем больше величина общего шага винта, тем на меньшей скорости полета возникает срыв потока. С увеличением высоты полета срыв потока наступает раньше, так как из-за уменьшения плотности воздуха для создания той же тяги общий шаг несущего винта необходимо увеличить.

Другой причиной, ограничивающей максимальную скорость полета, является влияние сжимаемости воздуха. При движении по полету каждая лопасть несущего винта в азимуте 90° про­ходит зону наибольших скоростей обтекания, в которой мест­ная скорость обтекания может превысить скорость звука. При этом возникает скачок уплотнения, приводящий к резкому увеличению силы лобового сопротивления лопастей несущего винта, а следовательно, и потребной мощности. Для снижения влияния сжимаемости воздуха в концевых сечениях лопастей несущего винта, работающих в зоне наибольших скоростей об­текания, установлены скоростные профили с небольшой отно­сительной толщиной.

Для уменьшения вредного сопротивления вертолета ось главного редуктора наклонена вперед от вертикальной оси на угол 4030/. Этим уменьшается наклон продольной оси фюзе­ляжа на крейсерской и максимальной скоростях полета, а следовательно, уменьшается площадь сечения фюзеляжа, рас­положенная перпендикулярно к встречному потоку воздуха.

Максимальная скорость горизонтального полета по прибо­ру до высоты 1000 м со взлетной массой 13000 кг (Ми-8Т — 12000 кг) установлена 230 км/ч, для взлетной массы 11 100— 250 км/ч.

Горизонтальный полет в учебных целях (при полетах по кругу и по системе) рекомендуется выполнять на скорости 160 км/ч. Полеты по маршруту, т. е. полеты, в которых тре­буется достигнуть наибольшую дальность полета, выполняют­ся на скоростях, указанных в табл. 1.

При полете со скоростями меньше указанных в табл. 1 ра­диус и дальность полета уменьшается, а продолжительность полета увеличивается. Максимальная продолжительность по­лета получается при скоростях по прибору 120—130 км/ч.