Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по коллоидной химии.pdf
Скачиваний:
1608
Добавлен:
14.02.2015
Размер:
2.87 Mб
Скачать

поверхностные пленки называются также конденсированными пленками. Агрегатное состояние мономолекулярной пленки определяется молекулярными силами, действующими - между молекулами пленки.

Рисунок 15 – Ориентация молекул поверхностно-активных веществ в адсорбционном слое: а – ненасыщенный монослой, б – насыщенный монослой

1. Газообразные пленки (G-пленки)

В таких пленках молекулы располагаются на большом расстоянии друг от друга и, соответственно, слабо взаимодействуют. Они движутся практически независимо, напоминая по свойствам молекулы газа. На изотерме двухмерного давления газообразное состояние отвечает линейному участку, параллельному оси абсцисс. Образование пленок этого типа характерно для веществ, у которых углеводородная часть содержит 12-22 атомов углерода. Они существуют при низких значениях двухмерного давления или достаточно высоких температурах. Такие пленки аналогичны поверхностным пленкам, которые образуют растворимые ПАВ при очень низкой их концентрации.

2. Жидкорастянутые пленки (LE-пленки или L2-пленки)

Они занимают промежуточное положение между газообразными и истинно жидкими пленками. Для них sм >> sо. У таких пленок существуют области конденсированного состояния, хотя толщина их меньше длины углеводородной части ПАВ. Такое состояние поверхности не имеет аналога в объемных фазах. Это возможно при таком расположении молекул, когда между углеводородными частями реализуется притяжение, а между полярными группами – умеренное отталкивание.

Такие пленки образуют жирные кислоты с небольшой длиной углеводородной цепи и вещества с разветвленными цепями.

3. Жидкие пленки (LC-пленки или L1-пленки)

Они характеризуются малой сжимаемостью, наличием конденсированного состояния – участков «частокола» Ленгмюра и образуются из LE-пленок при высоких значениях двухмерного давления. Их толщина равна длине углеводородной цепи молекулы ПАВ. На изотерме двухмерного давления таких пленок наблюдается резкий подъем.

Между жидким и жидкорастянутным состояниями может существовать переходная область сравнительно высокой сжимаемости, которая отвечает так называемым промежуточным пленкам, природа которых не вполне ясна.

4. Твердые пленки (S-пленки)

Их сжимаемость еще ниже, чем у LC-пленок и почти вся поверхность заполнена молекулами ПАВ в виде частокола Ленгмюра. Наиболее важные различия твердых пленок от жидких обнаруживается при сопоставлении их реологических свойств. В жидких пленках наблюдается их течение уже при малых напряжениях сдвига, а скорость сдвига линейно связана с напряжением. В противоположность, для твердых пленок характерна упругая деформация, они не текут, а при некотором значении напряжения разрушаются.

Адсорбция на границе твердое тело — раствор

Молекулярная и ионная адсорбция на твёрдых адсорбентах из растворов имеют много общего с адсорбцией из газов, но естественно, отличается от неё рядом особенностей. В первую очередь это меньшая скорость достижения адсорбционного равновесия даже на сравнительно гладких поверхностях. Кроме того, при адсорбции из растворов адсорбату приходится вытеснять с поверхности адсорбента молекулы растворителя, связанные с ним адгезионными силами, на что требуется дополнительная энергия. Поэтому адсорбция веществ из растворов будет происходить лишь в том случае, когда теплота адсорбции превышает теплоту адгезии растворителя. Но в общем случае адсорбция на поверхности раздела «твёрдое тело – жидкость» описывается

изотермами того же вида, что и газовая адсорбция, и к ней применимы те же уравнения Лэнгмюра и Фрейндлиха, но с соответственно иными константами.

Адсорбция на границе твердое тело — раствор в общем сходна с адсорбцией на поверхности твердое тело — газ, но в первом случае явление сильно усложняется наличием третьего компонента — среды (растворителя), молекулы которого могут также адсорбироваться на поверхности адсорбента и, следовательно, являться конкурентами молекул адсорбтива. Таким образом, адсорбция этого вида является всегда адсорбцией из смеси. Кроме того, адсорбция на границе раздела твердое тело — раствор всегда усложняется взаимодействием молекул адсорбтива с молекулами среды.

Для характеристики равновесной адсорбции из раствора используют какую-либо изотерму адсорбции.

Для достаточно разбавленных растворов адсорбция хорошо описывается уравнением Ленгмюра или Бедекера-Фрейндлиха, которое для адсорбции из растворов имеет вид:

kc1/ n .

Для экспериментального исследования адсорбции из растворов используют другие уравнения, например:

где Гэкс – количество вещества, адсорбированного 1 г адсорбента, моль/г; co и c – начальная и равновесная концентрации адсорбата, моль/дм3; V – объем раствора, из которого происходит адсорбция, дм3; m – масса адсорбента.

Существенную роль при адсорбции из жидких растворов играет природа растворителя и адсорбента. Общее правило: чем лучше данный растворитель смачивает адсорбент, тем меньше адсорбция растворенного вещества и наоборот. Адсорбция растворенного вещества на твердой поверхности будет тем больше, чем больше разность полярностей между растворителем и адсорбентом, и наоборот. Таким образом, адсорбция идет в сторону уравнивания полярностей и тем сильнее, чем больше разность полярностей (правило уравнивания полярностей Ребиндера).

Адсорбция электролитов из водных растворов на твердых адсорбентах является еще более сложным процессом, чем молекулярная адсорбция. На адсорбции ионов существенно сказывается природа адсорбента. Так, ионы, способные поляризоваться, адсорбируются обычно на поверхностях, состоящих из полярных молекул или ионов. Процесс адсорбции ионов усложняется еще и тем, что он, как правило, необратим.

Радиус ионов сильно влияет на их способность адсорбироваться. Так, из ионов одинаковой валентности лучше адсорбируются ионы, имеющие больший радиус, т.к., во-первых, такие ионы сильнее поляризуются, а во-вторых, меньше гидратируются. Среди ионов, имеющих различные заряды, как правило, лучше адсорбируются ионы с бóльшим зарядом. Ряды ионов, составленные в порядке уменьшения их способности связывать воду, называются лиотропными рядами (рядами Гедройца или рядами Гофмейстера).

Одновалентные катионы можно поставить в следующий ряд по возрастающей способности адсорбироваться:

Для двухвалентных катионов это будет следующий ряд:

Одновалентные анионы по их возрастающей способности адсорбироваться располагаются в такой последовательности:

Адсорбционная способность ионов весьма сильно зависит также от их валентности. Чем больше валентность иона, тем сильнее он притягивается противоположно заряженными микроучастками поверхности. Катионы различной валентности по их возрастающей адсорбционной способности можно расположить в следующий ряд:

Чаще всего из растворов на твёрдых поверхностях адсорбируются поверхностно-активные вещества. Своим присутствием в адсорбционном слое они уменьшают межфазное поверхностное

натяжение. Адсорбция ПАВ из растворов подчиняется правилу уравнивания полярностей П. А. Ребиндера (1927 г.):

вещество будет адсорбироваться на поверхности раздела фаз, если в результате его адсорбции уравнивается полярность этих фаз,

то есть полярность этого вещества должна занимать промежуточное положение между полярностями веществ, образующими фазы.

Хорошей иллюстрацией правила является адсорбция органических соединений из водных растворов на активированном угле. Так, например, анилин и фенол, обладая промежуточной между водой и углем полярностью, хорошо адсорбируются, а нитроанилин - соединение с высокой полярностью - практически не адсорбируется. Следствием правила Ребиндера является то, что поверхностно-активные вещества из водных растворов следует извлекать с помощью неполярных адсорбентов (например, активированным углем), а из растворов в бензоле, эфире, ацетоне и других неполярных органических жидкостях – с помощью полярных адсорбентов (например, силикагель или цеолиты).

При адсорбции ПАВ их молекулы ориентируются в адсорбционном слое в соответствии с дифильной природой (рис. 3.8):

Полярный

адсорбент (силикагель)

Неполярный

адсорбент (уголь)

Неполярный

растворитель

(бензол)

Полярный

растворитель

(вода))

Рисунок 16 – Ориентация дифильных молекул ПАВ в адсорбционном слое

Как и в случае адсорбции из газов, адсорбция из растворов уменьшается с ростом температуры.

Влияние природы среды

Поскольку, как уже было указано, при адсорбции из раствора молекулы адсорбтива и среды являются конкурентами, очевидно, чем хуже адсорбируется среда на адсорбенте, тем лучше будет происходить адсорбция растворенного вещества. Исходя из того, что поверхностноактивные вещества обладают малым поверхностным натяжением, можно считать, что чем больше поверхностное натяжение самой среды, тем меньше ее молекулы способны к адсорбции на твердом теле и тем лучше на нем адсорбируется растворенное вещество. Именно поэтому адсорбция на твердом теле обычно хорошо идет из водных растворов и гораздо хуже из растворов в углеводородах, спирта и других органических жидкостях со сравнительно малым поверхностным натяжением. Другим критерием пригодности растворителя в качестве среды для адсорбции является теплота смачивания этим растворителем адсорбента. При введении адсорбента в жидкость выделяется теплота смачивания. Чем больше тепла выделяется при смачивании, тем интенсивнее энергетическое взаимодействие растворителя с адсорбентом и тем, следовательно, худшей средой для адсорбции является данная жидкость. Вещества, состоящие из полярных молекул, дают большой тепловой эффект при смачивании полярными жидкостями (например, водой); вещества, состоящие из неполярных молекул, выделяют больше тепла при смачивании неполярными жидкостями (например, углеводородами).

Влияние свойств адсорбента и адсорбтива

На адсорбцию из растворов сильно влияют полярность и пористость адсорбента. Неполярные адсорбенты, как правило, лучше адсорбируют неполярные адсорбтивы, а полярные

адсорбенты — полярные адсобтивы. Влияние пористости адсорбента зависит от соотношения размеров пор адсорбента и молекул адсорбтива. При увеличении пористости адсорбента адсорбция малых молекул адсорбтива из растворов обычно возрастает, так как мелкопористые адсорбенты, обладают большим избирательным действием и влияние химической природы поверхности у. них повышено, Однако эта зависимость соблюдается лишь в том случае, когда молекулы адсорбтива достаточно малы и могут легко проникать в поры. Крупные молекулы адсорбтива не могут попасть в узкие поры адсорбента, и адсорбция уменьшается или, во всяком случае, чрезвычайно сильно замедляется. Результатом этого может явиться также обращение правила Дюкло — Траубе. Рассматривая влияние химической природы адсорбтива на его способность адсорбироваться на твердом теле, трудно сделать какие-нибудь обобщения, так как адсорбируемость одного и того же адсорбтива сильно зависит от полярности адсорбента и среды. Всё же, определяя влияние на адсорбцию свойств самого адсорбтива, можно исходить из правила уравнивания полярности, сформулированного П. А. Ребиндером; Согласно этому правилу вещество может адсорбироваться на поверхности раздела фаз А и В в том случае, если наличие, вещества С в поверхностном слое приводит к уравниванию разности полярностей этих фаз. Из правила уравнивания полярностей также вытекает, что чем больше разность полярностей между растворяемым веществом и раствором, т. е. чем меньше растворимость вещества, тем лучше оно будет адсорбироваться.

Также с увеличением молекулярного веса способность вещества адсорбироваться возрастает. Замечено также, что ароматические соединения вообще адсорбируются лучше, чем алифатические, а непредельные соединения лучше, чем насыщенные. Так же как и при адсорбции на границе раствор — воздух, при адсорбции жирных кислот и спиртов на твердых веществах качественно соблюдается правило Траубе.

Влияние времени, температуры и концентрации раствора

Адсорбция вещества из раствора идет медленнее адсорбции газа, так уменьшение концентрации в граничном слое может восполняться только путем диффузии, происходящей в жидкости в довольно медленно. для ускорения установления адсорбционного равновесия при этом часто применяют перемешивание системы.

При повышении температуры адсорбция из раствора уменьшается, однако обычно в меньшей степени, чем адсорбция газов.

Однако, когда растворимость малорастворимого адсорбтива в растворителе с увеличением температуры повышается, адсорбция также может возрастать вследствие достижения значительно более высоких концентраций равновесного раствора

При сильной адсорбции адсорбтива и слабой адсорбции растворителя кривая 1 вначале круто поднимается вверх, проходит через максимум и затем падает до нуля почти прямолинейно Снижение величины адсорбции Г объясняется тём, что при больших значениях N концентрации адсорбтива в поверхностном слое и в объеме раствора становятся очень большими и притом одинаковыми. Изотерма 2 характеризует отрицательную адсорбцию, абсолютное значение которой возрастает сначала линейно, потом достигает максимума и, наконец, при очень высокой концентрации адсорбтива в поверхностном слое и в объеме падает до нуля. Изотерма З характеризует сначала положительную гиббсовскую адсорбцию, которая затем меняет знак, переходя через нуль, и становится отрицательной. Отрицательная адсорбция с увеличением N также достигает нуля. В точке пересечения изотермы с осью абсцисс концентрации поверхностного и объемного створов одинаковы, так что данный адсорбент не может раздеть смеси. Это явление называют адсорбционной азеотропией.

Следует заметить, что адсорбция из раствора определяется не полным значением потенциальной энергии системы молекула адсорбтива адсорбент, как это имеет место при адсорбции газа при малом давлении, а разностью потенциальных энергий молекулы адсорбтива по отношению к адсорбенту и по отношению растворителю. Поэтому теплота адсорбции адсорбтива из раствора обычно в несколько раз меньше его адсорбции на том же сорбенте из газовой фазы.