Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом-новый.docx
Скачиваний:
36
Добавлен:
10.02.2015
Размер:
1.01 Mб
Скачать

4) Эксцентриситет эллипса:

Определение 2.2. Эксцентриситетом эллипса называют отношение межфокусного расстояния 2с к длине большой оси 2а.

.

Так как , следовательно,.

Если стремится к нулю при постоянном значении, тостремится к нулю. При этом величинастремится к. В предельном случаи уравнение эллипса принимает вид:. Это уравнение окружности. Если, то. При этом малая ось эллипса неограниченно уменьшается, эллипс стремится к отрезку. (чертеж 11.) [1.С.106]

Чертеж 11.

5) Диаметры эллипса:

Всякая хорда, проходящая через центр эллипса, называется диаметром эллипса. В частности, диаметрами эллипса является его большая ось и малая ось. Всякий диаметр эллипса, не являющийся его осью, больше малой оси, но меньше большой оси (чертеж 12.). [1.С.106-107]

Чертеж 12.

6) Касательная к эллипсу:

Уравнение касательной к эллипсу где- координаты точки касания и соответственно большая и меньшая полуоси эллипса (чертеж 13.).

Чертеж 13.

7) Частный случай эллипса - окружность:

, где окружности.

8) Взаимное расположение точек и эллипса:

эллипсу, если верное равенство,

Если толежит внутри эллипса,

Если толежит вне эллипса. [1.С.100]

9) Уравнения директрис эллипса:

Пусть эллипс задан уравнением и если при этом , тоиуравнения директрис эллипса, если, то директрисы определяются уравнениями.

ГИПЕРБОЛА

Определение 3.1. Гипербола - множество точек плоскости, модуль разности расстояний от которых до двух данных точек этой плоскости, называемых фокусами гиперболы, есть заданная постоянная величинаменьшая, чем расстояние между фокусами [8.С.510]

Общий вид уравнения

Исследование свойств гиперболы по ее уравнению

1) Пересечение гиперболы с осями координат:

Очевидно, что гипербола состоит из двух ветвей: правой и левой, простирающихся в бесконечность.

В уравнении (12) положим, что y=0, получим: отсюда. Следовательно, точкиявляются точками пересечения гиперболы с осью(чертеж 19.).

Чертеж 19.

Положим, что в уравнении (12) х=0, и получим: , следовательно, уравнение гиперболы не пересекает ось.

ЗАМЕЧАНИЕ: Если мнимая ось гиперболы имеет длину 2a и направлена по оси (OX), а действительная ось длиной 2b совпадает с осью (OY), то уравнение гиперболы имеет вид: . [1.С.107-108]

Определение 3.2. Гиперболы, заданные уравнениями и , называются сопряженными гиперболами.

Определение 3.3. Если a=b, гипербола называется равносторонней.

2) Симметрии гиперболы относительно координатных осей и:

Пусть принадлежит гиперболе, то естьверное равенство. Точкасимметрична точкеотносительно оси ОХ:

- верное равенство. Следовательно, принадлежит гиперболе, следовательно, гипербола симметрична относительно ОХ.

Точка симметрична точкеотносительно оси ОУ, следовательно, гипербола симметрична относительно оси ОУ.

Точка симметрична точкеотносительно О (центра), отсюда следует, что гипербола симметрична относительно начала координат. [1.С.108]

3) Асимптоты гиперболы:

Текущая точка гиперболы при движении по ней в бесконечность неограниченно приближается к некоторой прямой, которая называется асимптотой гиперболы. Асимптотами являются прямые, которые имеют следующие уравнения:

и ,

Пусть текущая точка гиперболы, ее проекция на ось абсцисс. Прямая пересекает прямую, заданную указанным уравнением в точке. Докажем: чтопри.

Доказательство:

.Расстояние это ордината точки, лежащей на прямой. Она равна. Расстояниеэто ордината точкигиперболы, которую находим из её канонического уравнения:Тогда

Умножим и разделим равенство (13) на (),следовательно, получим:

При знаменатель дроби неограниченно увеличивается, следовательно, дробь стремится к нулю.

- уравнение гиперболы, в которой а- являются асимптотами гиперболы. (чертеж 20.) [1.С.108]

Чертеж 20.