Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

511

cyte function associated), другой -Mac-1, так как он в основном встречается на макрофагах. Эти рецепторы участвуют как в межклеточных взаимодействиях, так и во взаимодействиях клеток с матриксом; они играют решающую роль в способности этих клеток бороться с инфекцией. Люди с наследственным дефицитом лейкоцитарной адгезии неспособны синтезировать β-субъединицу; поэтому их лейкоциты лишены целого семейства рецепторов, и больные подвержены повторным бактериальным инфекциям. Ряд гликопротеинов клеточной поверхности, участвующих в позиционно-специфической клеточной адгезии у личинок Drosophila, тоже принадлежат к суперсемейству интегринов, однако их отношение к трем семействам, свойственным млекопитающим, неизвестно.

Однако не все рецепторы для матрикса принадлежат к этому суперсемейству. Например, некоторые клетки, по-видимому, используют для прикрепления к коллагену неродственный трансмембранный гликопротеин, а у многих клеток, как уже упоминалось, имеются интегральные мембранные протеогликаны, прикрепляющие клетки к внеклеточному матриксу.

14.2.18. Цитоскелет и внеклеточный матрикс взаимодействуют через плазматическую мембрану [26]

Макромолекулы внеклеточного матрикса оказывают поразительное воздействие на поведение клеток в культуре, влияя не только на их движение, но и на форму, полярность, метаболизм и дифференцировку. Например, клетки эпителия роговицы при росте на искусственных поверхностях производят очень мало коллагена; если же культивировать их на ламинине, коллагене или фибронектине, то они накапливают и секретируют коллаген в больших количествах. Другие примеры влияния внеклеточного матрикса на метаболизм и дифференцировку клеток будут обсуждаться в гл. 17 (разд. 17.7.1).

Матрикс может также влиять на организацию цитоскелета клетки. Обычно базальные поверхности эпителиальных клеток, растущих на пластике или стекле, имеют неправильную форму, а прилегающий к ним изнутри цитоскелет дезорганизован. Но когда те же клетки растут на подложке из подходящих макромолекул внеклеточного матрикса, базальные поверхности становятся гладкими, а цитоскелет над ними - таким же упорядоченным, как в интактной ткани. Сходные результаты были получены на культурах фибробластов, подвергшихся опухолевой трансформации. Трансформированные клетки часто вырабатывают меньше фибронектина, чем нормальные культивируемые клетки, и отличаются от них поведением: например, они слабо прикрепляются к субстрату и неспособны распластываться на нем или формировать организованные внутриклеточные пучки актиновых филаментов, известных под названием стрессовых волокон (разд. 11.1.17). У некоторых из таких клеток недостаток фибронектина по крайней мере частично ответствен за их аномальное поведение: если клетки растут на матриксе из организованных волокон фибронектина, то они распластываются и формируют внутриклеточные стрессовые волокна, лежащие параллельно волокнам внеклеточного фибронектина.

Взаимодействие между внеклеточным матриксом и цитоскелетом бывает двусторонним: внутриклеточные актиновые филаменты могут влиять на расположение секретируемых молекул фибронектина. Например, в культуре поблизости от фибробластов волокна внеклеточного фибронектина выстраиваются по направлению смежных внутриклеточных стрессовых волокон (рис. 14-53). Если такие клетки обработать цитохалазином, который разрушает внутриклеточные актиновые фила-

512

Рис. 14-53. Иммунофлуоресцентные микрофотографии внеклеточных волокон фибронектина (А) и внутриклеточных пучков актиновых филаментов (Б) в трех культивируемых фибробластах крысы. Для выявления фибронектина использованы антитела к фибронектину с

присоединенным родамином, а для выявления актина-антитела к актину с присоединенным флуоресцеином. Обратите внимание, что направление волокон фибронектина совпадает с направлением пучков актиновых нитей. (R. О. Hynes, А. Т. Destree. Cell 15: 875-886, 1978. Copyright Cell Press.)

менты, то волокна фибронектина отделяются от клеточной поверхности (точно так же, как во время митоза, когда клетка округляется). Ясно, что должна существовать связь между внеклеточным фибронектином и внутриклеточными актиновыми филаментами через плазматическую мембрану фибробласта. Такую связь осуществляют рецепторы фибронектина, о которых уже говорилось, что эти трансмембранные белки соединяют фибронектин с актиновыми филаментами через такие внутриклеточные прикрепительные белки, как талин (см. разд. 11.2,8. и рис. 14-52). Участок рецептора, связывающий талин, содержит остаток тирозина, фосфорилирование которого тирозин-специфической протеинкиназой, по-видимому, инактивирует этот участок и таким образом разрушает связь между фибронектином и кортикальными актиновыми филаментами. Как полагают, прикрепление клеток к матриксу может регулироваться таким путем специфическими факторами роста, активирующими тирозин-специфические киназы (см. рис. 13-37).

Поскольку цитоскелет клеток способен упорядочивать секретируемые ими макромолекулы матрикса, а те в свою очередь организуют цитоскелет контактирующих с ними клеток, внеклеточный матрикс может в принципе распространять упорядочивание от клетки к клетке (рис. 1454). Таким образом, можно полагать, что внеклеточный матрикс играет центральную роль в создании и поддержании ориентации клеток в тканях и органах в процессе развития; например, параллельное расположение фибробластов и коллагеновых волокон в сухожилии мог бы частично отражать именно такие взаимодействия между клетками и матриксом. Трансмембранные рецепторы для матрикса служат в этом процессе упорядочивания «посредниками».

Заключение

Клетки в соединительных тканях погружены в сложный внеклеточный матрикс, который не только скрепляет клетки и ткани, но и влияет на развитие, полярность и поведение контактирующих с ним клеток. Матрикс содержит различные волокнообразующие белки, вплетенные в гидратированный гель, состоящий из сети цепочек гликозаминогликанов. Гли-

Рис. 14-54. Гипотетическая схема передачи упорядоченности от клетки к клетке через внеклеточный матрикс. Для простоты на рисунке показано, как одна клетка влияет на ориентацию соседних клеток, но та же схема позволяет объяснить и взаимное влияние клеток друг на друга.

513

козамшогликаны представляют собой разнородную группу длинных, отрицательно заряженных полисахаридных цепей, которые (за исключением гиалуроновой кислоты) ковалентна связаны с белками, образуя молекулы протеогликанов.

Существуют волокнообразующие белки двух функциональных типов: преимущественно структурные (коллаген и эластин) и главным образом адгезивные (такие, как фибронектин и ламинин). Фибриллярные коллагены (типы I, II и III) представляют собой канатовидные трехспиральные молекулы, которые во внеклеточном пространстве агрегируют в длинные фибриллы, а те в свою очередь могут организовываться в разнообразные высокоупорядоченные структуры. Молекулы коллагена типа IV организуются в пластоподобные сети, составляющие основу всех базальных мембран. Молекулы эластина благодаря многочисленным поперечным сшивкам образуют сеть волокон и слоев, которые могут растягиваться и вновь сокращаться, придавая матриксу упругость. Фибронектин и ламинин служат примерами крупных адгезивных гликопротеинов матрикса; фибронектин очень широко распространен в соединительных тканях, а ламинин содержится главным образом в базальной мембране. Благодаря своим множественным прикрепительным доменам такие белки способствуют клеточной адгезии и участвуют в организующем влиянии внеклеточного матрикса на клетки. Многие из этих адгезивных гликопротеинов содержат общую трипептидную последовательность (RGD), которая составляет часть структуры, узнаваемой интегринами - членами суперсемейства гомологичных трансмембранных рецепторов для компонентов матрикса.

Все белки и полисахариды матрикса локально секретируются клетками, соприкасающимися с матриксом; в тесном взаимодействии с наружной поверхностью плазматической мембраны эти молекулы могут упорядочиваться. Поскольку структура и ориентация матрикса в свою очередь влияет на ориентацию контактирующих с ним клеток, весьма вероятно, что упорядоченность будет распространяться по матриксу от клетки к клетке.

14.3. Межклеточное узнавание и адгезия [27]

До сих пор мы рассматривали, как межклеточные соединения и внеклеточный матрикс удерживают клетки вместе в зрелых тканях и органах. Но каким образом клетки объединяются друг с другом на начальных стадиях формирования тканей? Существуют по меньшей мере два принципиально различных способа. Чаще всего ткань образуется из «клеток-основательниц», потомки которых остаются вместе просто потому, что они прикреплены к макромолекулам внеклеточного матрикса и/или к другим клеткам (рис. 14-55). Конкретные особенности таких соединений и определяют структуру клеточного ансамбля. Эпителиальные клеточные пласты обычно возникают именно таким путем, и процессы эмбрионального развития животных в значительной части сводятся к формированию, изгибанию и дифференцировке таких клеточных пластов, что приводит к созданию тканей и органов взрослого организма. Как правило, все клетки раннего зародыша организованы в эпителии, и только позже некоторые клетки изменяют свои адгезивные свойства, выходят из пластов и формируют ткани других типов (разд. 16.1.4-16.1.II).

Другая стратегия формирования ткани представляется более сложной и включает миграцию клеток: одна клеточная популяция проникает в другую и объединяется с ней (а иногда и с другими мигрирующими клетками), формируя ткань смешанного происхождения. Например, в зародышах позвоночных клетки нервного гребня выселяются из эпи-

Рис. 14-55. Простейший механизм образования ткани из клеток. Потомки клеток-основательниц удерживаются в эпителиальном слое с помощью базальной мембраны и механизмов межклеточной адгезии (включая специализированные межклеточные соединения).

514

Рис. 14-56. Пример более сложного механизма построения ткани из клеток. Клетки нервного гребня мигрируют из эпителия на верхней поверхности нервной трубки и направляются во многие другие участки зародыша, где образуют различные группы клеток и ткани. Здесь показано,

как эти клетки объединяются и дифференцируются в два скопления нейронов периферической нервной системы. Такие скопления называют ганглиями. Другие клетки нервного гребня в ганглии дифференцируются в опорные (сателлитные) клетки, окружающие нейроны.

Рис. 14-57, Световая микрофотография ползущего плазмодия миксомицета Dictyostelium discoideum. (С любезного разрешения David Francis.)

телиальной (нервной) трубки, в состав которой они первоначально входили, и по определенным путям мигрируют во многие другие участки. Там они группируются и дифференцируются в различные ткани, в том числе и элементы периферической нервной системы (рис. 14-56). Для такого процесса нужен какой-то механизм, направляющий клетки к месту их назначения, например секреция растворимого химического агента, привлекающего мигрирующие клетки (путем хемотаксиса), или отложение во внеклеточном матриксе адгезивных молекул типа фибронектина (разд. 14.2.13), направляющих миграцию клеток по определенным путям (путем контактной ориентировки).

Достигнув места назначения, мигрирующая клетка должна узнавать другие клетки соответствующего типа, чтобы формировать вместе с ними ткань. Даже в тканях, образующихся без миграции, составляющие их клетки, по-видимому, специфически узнают друг друга: если такую развивающуюся ткань диссоциировать на отдельные клетки, то они предпочтительно вновь ассоциируют друг с другом, а не с клетками другой ткани (разд. 14.3,4). По-видимому, такое специфическое межклеточное узнавание способствует тому, что клетки развивающейся ткани остаются в контакте друг с другом и отделены от клеток соседних тканей.

В попытках понять, как узнают друг друга клетки в развивающихся животных тканях, были проведены остроумные эксперименты на некоторых простых микроорганизмах, способных переходить от одноклеточного существования к многоклеточному и обратно. Независимо от их значения как возможных моделей межклеточного взаимодействия у животных эти организмы интересны и сами по себе.

14.3.1. Миксамебы слизевика при голодании агрегируют с образованием многоклеточных плодовых тел [28]

Слизевик (миксомицет) Dictyostelium discoideum представляет собой эукариотический организм, геном которого только в 10 раз больше, чем у бактерии, и в 100 раз меньше, чем у человека. Эти организмы живут в лесной подстилке в виде отдельных подвижных клеток, называемых миксамебами, питающихся бактериями и дрожжами и при оптимальных условиях делящихся раз в несколько часов (в лабораторных условиях их можно выращивать в жидкой синтетической среде). Когда запасы пищи истощаются, миксамебы перестают делиться и собираются вместе, образуя крошечные (1-2 мм) многоклеточные червеобразные существа (плазмодии), ползающие наподобие слизней и оставляющие за собой след из слизи

(рис. 14-57).

Каждый плазмодий формируется путем агрегации до 100000 клеток и проявляет черты поведения, не свойственные свободноживущим миксамебам. Например, плазмодий чрезвычайно чувствителен к свету и теплу и может мигрировать по направлению к такому слабому источнику света, как флуоресцирующий циферблат часов; по-видимому, такое поведение помогает ему двигаться в направлении более благоприятных условий. По мере движения клетки приступают к дифференцировке,

515

Рис. 14-58. Разные стадии образования плодового тела Dictyostelium discoideum. (Световые микрофотографии; с любезного разрешения

John Bonner.)

Рис. 14-59. Миграции клеток при формировании плодового тела у Dictyostelium discoideum. Клетки передней части слизевика перемещаются вниз и образуют ножку, а клетки средней части мигрируют вверх и дифференцируются в споры, образующие плодовое тело.

результатом которой примерно через 30 ч после начала агрегации будет образование миниатюрной, напоминающей растение структуры, состоящей из ножки и плодового тела (рис. 14-58). В плодовом теле содержится множество спор, которые могут долгое время выживать даже в крайне неблагоприятных условиях. На рис. 14-59 схематически показаны сложные миграции клеток, происходящие при формировании ножки и плодового тела. Клетки на переднем конце плазмодия становятся участком ножки, следующие за ними дифференцируются в споры, а замыкающие-в подошву. И клетки ножки, и споры покрываются внеклеточным матриксом (в виде целлюлозных стенок), и в конце концов все клетки, за исключением спор, погибают. Только при наступлении благоприятных условий споры прорастают в свободноживущих миксамеб, возобновляющих цикл (рис. 14-60).

14.3.2. Амебы слизевика агрегируют в результате хемотаксиса [29]

При формировании плазмодия отдельные клетки слизевика агрегируют в результате хемотаксиса, который нам придется рассмотреть, прежде чем обсуждать роль межклеточной адгезии. Одна из реакций на голодание у миксамеб состоит в том, что они начинают вырабатывать и выделять сАМР, который служит хемотаксическим сигналом, привлекающим других миксамеб. (Как мы знаем из гл. 12, в прокариотических и животных клетках сАМР служит внутриклеточным сигналом; Dictyostelium-единственный организм, у которого он действует еще и как внеклеточная сигнальная молекула.) По-видимому, агрегация инициируется случайным образом: любые клетки, начинающие первыми секретировать циклический AMP, привлекают другие клетки и таким образом становятся центрами агрегации. Циклический AMP, вырабатываемый такими «клетками-инициаторами», секретируется отдельными «импульсами» и связывается специфическими рецепторами на поверхности соседних голодающих амеб, направляя тем самым их движение

516

Рис. 14-60. Жизненный цикл Dictyostelium discoideum. При голодании свободноживущие миксамебы агрегируют с образованием подвижного плазмодия, который затем образует плодовое тело. При благоприятных условиях высвобождающиеся из плодового тела споры

прорастают и вновь превращаются в амеб.

Рис. 14-61. Нанесение небольшого количества циклического AMP на любую точку поверхности голодающей клетки (амебы) Dictyostelium тотчас же вызывает образование псевдоподии в этой точке. Такой механизм позволяет амебе двигаться по направлению к источнику сАМР. Чтобы

воздействовать на клетку, циклический AMP должен связаться со специфическими рецепторами на ее поверхности.

всторону источника циклического AMP. Такой хемотаксический ответ можно продемонстрировать, нанеся из микропипетки ничтожное количество сАМР на любой участок поверхности клетки голодающей миксамебы. Ответом будет немедленное образование псевдоподии, растущей в сторону пипетки (рис. 14-61); псевдоподия прикрепляется к поверхности, на которой находится клетка, и тянет клетку в том же направлении. Как только образуется центр агрегации, зона его влияния быстро расширяется, так как агрегирующие клетки не только отвечают на сигнал циклического AMP, но и передают его от клетки к клетке. Каждый импульс циклического AMP побуждает соседние клетки не только к движению к источнику импульса, но и к испусканию собственного импульса в виде циклического AMP. Этот новый, высвобождающийся с небольшой задержкой импульс

всвою очередь ориентирует находящиеся рядом клетки, вызывая у них тоже выброс сАМР, и т.д. Таким образом возникают регулярные чередующиеся волны циклического AMP, распространяющиеся из каждого центра агрегации, заставляя более удаленных миксамеб двигаться внутрь концентрическими или спиральными волнами, которые можно видеть на кадрах цейтраферных фильмов (рис. 14-62). Преимущество такой системы передачи состоит в том, что по мере распространения из центра сигнал постоянно возобновляется, не ослабляясь на большом расстоянии. В отличие от этого сигнал, распространяющийся только путем диффузии, постепенно ослабевает по мере распространения. Это различие можно ясно увидеть, сравнивая процесс агрегации у Dictyostelium discoideum и у D. minutum-формы, у которой релейная система передачи отсутствует. У D. munutum уровень сигнала, исходящего из каждого центра агрегации, сильно ослабевает, и в результате формируются очень мелкие плазмодии и плодовые тела.

517

14.3.3. Межклеточная адгезия у слизевиков зависит от специфических гликопротеинов клеточной поверхности [30]

Помимо активации сигнальной системы циклического AMP голодание миксамеб Dictyosteliun вызывает экспрессию сотен новых генов, и некоторые из них кодируют молекулы межклеточной адгезии, участвующие в агрегации клеток. Полагают, например, что один из связывающих углеводы белков (т.е. лектинов, см. разд. 6.3.1)-дискоидин-1-выделяет-ся голодающими клетками для обеспечения примитивных форм контактной ориентировки. Связываясь с поверхностью миксамебы и с субстратом, по которому она мигрирует, он мог бы способствовать образованию потоков миксамеб, движущихся к центрам агрегации, во многом подобно тому, как фибронектин направляет миграцию клеток во время гаструляции. В самом деле, связывание клетки с дискоидином-1 зависит от того же трипептида RGD, который содержится в фибронектине и многих других адгезивных белках (разд. 14.2.13).

Различные вновь синтезируемые белки способствуют процессу межклеточной адгезии, позволяя мигрирующим миксамебам плотно слипаться друг с другом и формировать многоклеточный организм. В первые 8 ч голодания клетки слипаются с помощью Са2 +-зависимого механизма с участием адгезивной молекулы, называемой контактным сайтом В. Через 8 ч вступает в действие другая адгезионная система, где слипание клеток осуществляется Са2 +-независимым механизмом с участием молекулы межклеточной адгезии, называемой контактным сайтом А. Контактные сайты А и В были выделены и идентифицированы как интегральные гликопротеины плазматической мембраны с помощью остроумного иммунологического метода, представленного на рис. 14-63. Позднее этот метод был использован для идентификации молекул межклеточной адгезии также и у позвоночных.

Каким образом гликопротеины клеточной поверхности, такие как контактные сайты А и В, связывают клетки друг с другом? На рис. 1464 представлены три возможных механизма: 1) молекулы одной клетки могут связываться с такими же молекулами соседних клеток (так называемое гомофильное связывание); 2) молекулы одной клетки могут связываться с иного рода молекулами соседних клеток (гетерофильное связывание); и 3) рецепторы клеточной поверхности соседних клеток могут связываться друг с другом, секретируя мультивалентные линкерные молекулы. Как выяснилось, у животных действуют все эти три механизма.

Полагают, что контактный сайт А обеспечивает слипание клеток путем гомофильного механизма, так как после присоединения белка к синтетическим агрегатам эти агрегаты связываются только с клетками, вырабатывающими контактный сайт А, и это связывание блокируется, если клетки предварительно обработаны антителами к контактному сайту А. Секвенирование ДНК показывает, что контактный сайт А - это лишь один раз пронизывающий мембрану белок, по-видимому, не родственный ни одному из до сих пор известных белков межклеточной адгезии (см. ниже).

14.3.4. Диссоциированные клетки позвоночных могут вновь ассоциироваться в организованную ткань благодаря селективной межклеточной адгезии

Привлекательность использования таких микроорганизмов, как Dictyo-stelium, при изучении агрегации клеток состоит в том, что этот процесс нормально протекает в культуральной чашке, где он доступен для

Рис. 14-62. «Волны» голодающих амеб Dictyostelium, движущихся к центру агрегации. При таком малом увеличении отдельные амебы не видны. (Световая микрофотография; с любезного разрешения Günter Gerisch.)

518

Рис. 14-63. Иммунологический метод идентификации белков плазматической мембраны, участвующих в межклеточной адгезии. На этапе 1 получают антитела (обычно кроличьи) к исследуемым клеткам или к их изолированным плазматическим мембранам. На этапе 2 выделяют и тестируют моновалентные фрагменты, чтобы получить препарат антитела, блокирующий межклеточную адгезию. (Используются моновалентные фрагменты, полученные с помощью протеаз - см. разд. 18.2.4), так как они не сшивают клетки и, таким образом, не вызывают «ложной» адгезии.

Для выявления молекул клеточной поверхности, участвующих в межклеточной адгезии, белки плазматической мембраны солюбилизируют, отделяют друг от друга и каждую фракцию испытывают на способность нейтрализовать действие фрагментов антител, блокирующее агрегацию клеток (этапы 3 и 4). Затем фракции, проявившие такую способность, очищают и вновь тестируют до тех пор, пока не будет получен чистый белок (этот процесс на схеме не показан). Другой Иммунологический подход состоит в получении большого числа моноклональных антител (разд. 4.5.4) к антигенам клеточной поверхности и их скрининге для выявления тех, которые будут блокировать межклеточную адгезию. Оба иммунологических метода основаны на важном общем наблюдении: простое нанесение на клеточную поверхность антител само по себе не препятствует нормальной

клеточной адгезии; адгезия блокируется только тогда, когда мишенями для связывания антител служат специфические молекулы клеточной поверхности, участвующие в адгезии.

исследования. К сожалению, такая возможность изучать процессы клеточного узнавания в ходе развития многоклеточных животных представляется редко. Обычно мы можем в лучшем случае диссоциировать клетки формирующейся ткани, а затем испытывать их способность вновь объединяться in vitro. В отличие от тканей взрослого организма, которые трудно разделить на отдельные клетки, эмбриональные ткани позвоночных легко диссоциируют при воздействии малых концентраций прогеолигического фермента трипсина, иногда в сочетании с удалением внеклеточного кальция с помощью подходящего хелатора (например, ЭДТА). Эти воздействия нарушают межбелковые взаимодействия (многие из которых зависят от Са2 + , см. разд. 14.3.7), удерживающие клетки вместе. Поразительно то, что такие диссоциированные клетки часто вновь объединяются in vitro в структуры, напоминающие исходную ткань. Таким образом, структура ткани не является только результатом процесса развития, а активно поддерживается и стабилизируется системой взаимного сродства клеток друг к другу и к внеклеточному

519

матриксу. Поэтому можно надеяться, что изучение реагрегации диссоциированных клеток в культуре поможет выяснить роль адгезии между клетками и между клетками и матриксом в создании и поддержании организации тканей.

В этом смысле поучительны эксперименты на культивируемых клетках эпидермиса (эпителия кожи). В этой ткани решающую роль в удерживании вместе клеток, называемых кератиноцитами, в многослойном пласте на базальной мембране играют Са2+-зависимые адгезионные системы. Кератиноциты в базальном слое кожи - относительно недифференцированные клетки, они быстро пролиферируют и поставляют новые клетки в верхние слои, где клеточные деления прекращаются и происходит окончательная дифференцировка (разд. 17.4.2). Помещенные на подходящий субстрат в культуре, диссоциированные кератиноциты будут точно так же делиться и дифференцироваться. Однако если в культуре поддерживать концентрацию Са2+ ниже нормы, то Са2+-за-висимые адгезионные системы не смогут действовать и кератиноциты будут расти в виде монослоя, где перемещаны как делящиеся, так и дифференцирующиеся клетки. Если затем повысить концентрацию Са2 + , то пространственная организация клеток вскоре изменится; монослой преобразуется в многослойный эпителий, где пролиферирующие клетки образуют базальный слой, прилегающий к субстрату, а дифференцирующиеся клетки выделяются в верхние слои, так же как и в нормальной коже. Это позволяет предполагать, что послойное расположение кератиноцитов в зависимости от состояния их дифференцировки поддерживается Са2 +-зависимыми механизмами межклеточной адгезии (см. рис. І4-68).

14.3.5. Реагрегация диссоциированных клеток позвоночных зависит от тканеспецифических систем узнавания [32]

При нормальном развитии большинства тканей не встречается сортировка случайно перемешанных клеток разных типов (разд. 16.4). Тем не менее, если диссоциированные эмбриональные клетки из двух разных тканей позвоночного, например из печени и сетчатки, перемешать, то эти агрегаты из перемешанных клеток будут постепенно рассортировываться в соответствии с тканевой принадлежностью клеток. Такой тест, повидимому, выявляет тканеспецифические системы межклеточного узнавания, которые удерживают вместе клетки в развивающейся ткани. Подобные системы узнавания можно продемонстрировать и другим способом. Как показано на рис. 14-65, диссоциированные клетки легче слипаются с агрегатами своей собственной ткани, чем с агрегатами других тканей. Таким образом, два разных теста - определение степени сродства клеток в опытах с длительной инкубацией (рассортировка клеток) и оценка тенденции клеток присоединяться к уже имеющимся агрегатам - дают сходный результат.

Какова молекулярная основа такой избирательной межклеточной адгезии у позвоночных? По-видимому, здесь, как и у слизевиков, ответственны два разных механизма межклеточной адгезии, один из которых Са2+-независимый, а другой - Са2 +-зависимый, и в каждом из них участвует особое семейство гомологичных гликопротеинов клеточной поверхности.

Рис. 14-64. Три возможных способа взаимодействия между молекулами клеточной поверхности в процессе межклеточной адгезии.

520

Рис. 14-65. Тканеспецифическая адгезивность диссоциированных эмбриональных клеток позвоночных по данным теста со связыванием радиоактивных клеток. Адгезивность можно оценить, определив число меченых клеток, связавшихся с клеточными агрегатами за тот или иной промежуток времени. Склонность к адгезии выше между клетками одного типа. В часто используемой модификации этого теста клетки метят

флуоресцентным или радиоактивным маркером и исследуют их связывание с монослоем немеченых клеток в культуре.

14.3.6. У позвоночных в Са2 +-независимой межклеточной адгезии участвуют гликопротеины плазматической мембраны из суперсемейства иммуноглобулииов; таковы, например, молекулы адгезии нервных клеток (N-CAM)

Для идентификации некоторых гликопротеинов клеточной поверхности, участвующих в межклеточной адгезии у позвоночных, был использован иммунологический метод, представленный на рис. 14-63. В одном из наиболее изученных примеров были получены фрагменты моновалентного антитела к клеткам сетчатки куриного эмбриона. Затем были отобраны антитела, ингибирующие реагрегацию этих клеток in vitro. Мембранные белки клеток сетчатки были затем фракционированы и испытаны на способность нейтрализовать блокирующую активность антител. Таким путем был идентифицирован крупный (около 1000 аминокислотных остатков) трансмембранный гликопротеин, названный молекулой адгезии нервных клеток (N-CAM). N-CAM экспрессируется на поверхности нервных и глиальных клеток (разд. 19.1.6), «склеивая» их при участии Са2 +-независимого механизма. Если такие мембранные белки очистить и ввести в синтетические фосфолипидные пузырьки, то эти пузырьки будут склеиваться друг с другом, а также с клетками, имеющими N-CAM на своей поверхности; однако склеивание блокируется, если клетки предварительно обработать моновалентными антителами к N-CAM. Это указывает на то, что N-CAM связывает клетки друг с другом с помощью гомофильного взаимодействия, непосредственно соединяющего две молекулы N-CAM(CM. рис. 14-64).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]