Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

451

Рис. 13-57. Расхождение хромосом в анафазе клетки из эндосперма Haemanthus. При переходе от метафазы (А) к анафазе (Б) хромосомы растаскиваются полюсными микротрубочками. Клетки окрашены антителами к тубулину, меченными золотом. (С любезного разрешения Andrew

Bajer.)

13.5.7. В анафазе сестринские хроматиды внезапно расходятся [41]

Как мы только что видели, метафаза - относительно стабильное состояние, и при обычных условиях многие клетки в течение часа и более пребывают в этой стадии, когда их хромосомы совершают лишь колебательные движения в метафазной пластинке. Анафаза начинается внезапным синхронным расщеплением всех хромосом на сестринские хроматиды, каждая из которых имеет свой кинетохор (рис. 13-57). Сигнал к началу анафазы исходит не от самого веретена, поскольку даже хромосомы, не прикрепленные к веретену, разделяются на хроматиды в то же самое время, что и прикрепленные. Судя по результатам некоторых экспериментов, этот сигнал должен быть связан с повышением концентрации Са2+ в цитозоле. Во-первых, непрерывное наблюдение над клетками, содержащими флуоресцентный индикатор ионов кальция (разд. 4.2.3), показывает, что в некоторых клетках в анафазе происходит быстрое, но кратковременное десятикратное повышение внутриклеточного уровня Са2+ . Во-вторых, микроинъекция небольших количеств кальция в культивируемые клетки на стадии метафазы может привести к преждевременному наступлению анафазы. В-третьих, у полюсов веретена обычно видны скопления мембранных пузырьков, и специальная электронно-микроскопическая техника позволяет установить, что эти пузырьки богаты кальцием. Таким образом, возможно, что пузырьки, связанные с веретеном, выделяют С2+ для инициации анафазы (рис. 13-58), подобно тому как саркоплазматический ретикулум высвобождает Са2+ для инициации сокращения скелетной мышцы (разд. 11.1.14).

Рис. 13-58. На этой электронной микрофотографии видно скопление специально окрашенных мембранных пузырьков (напоминающих цитоплазматичсский ретикулум) около полюса веретена; пузырьки вытянуты вдоль микротрубочек веретена. (Метафазная клетка из листа ячменя;

фото предоставлено Peter Hepler, из J. Cell Biol. 86: 490-499, 1980, by copyright permission of the Rockefeller Univ. Press.)

452

13.5.8. Расхождение хромосом в анафазе состоит из двух процессов [42]

Как только каждая хромосома расщепилась в ответ на анафазный сигнал, две ее хроматиды начинают двигаться к противоположным полюсам веретена, где они будут включены в ядра новых клеток, По-видимому, это движение - результат двух независимых процессов, происходящих в веретене (рис. 13-59). Первый из них состоит в перемещении хроматид к полюсам и связан с укорочением микротрубочек, прикрепленных к кинетохорам; обычно этот процесс называют анафазой А. Второй процесс - раздвигание самих полюсов, связанное с удлинением полярных микротрубочек и называемое анафазой В. Эти два процесса можно различить по их избирательной чувствительности к некоторым ядам. Например, низкая концентрация хлоралгидрата предотвращает раздвигание полюсов и удлинение полярных микротрубочек (анафаза В), но не действует ни на микротрубочки кинетохоров, ни на движение хроматид к полюсам (анафаза А). Относительный вклад каждого из этих процессов в окончательное расхождение хромосом существенно различен в зависимости от организма. Например, у клеток млекопитающих анафаза В начинается вскоре после начала движения хроматид к полюсам и заканчивается, когда веретено достигает длины в 1,5-2 раза больше метафазной. У некоторых других клеток, таких как дрожжи, анафаза В начинается только после того, как хроматиды доходят до места своего назначения, а у некоторых простейших анафаза В преобладает и веретено становится в 15 раз длиннее, чем в метафазе.

13.5.9. Во время анафазы А происходит распад микротрубочек, прикрепленных к кинетохорам [43]

При движении хромосом от области метафазной пластинки к полюсам веретена на них воздействуют удивительно большие силы. Измерения с помощью тонких стеклянных игл дают оценку около 10 -5 дин на

Рис. 13-59. Различные силы, действующие в анафазе при расхождении сестринских хроматид. А. Хроматиды оттягиваются к противоположным полюсам в результате укорочения кинетохорных микротрубочек (движение, называемое анафазой А). Б. В то же время оба полюса веретена отодвигаются дальше друг от друга (движение, называемое анафазой В). Возможно, что силы, обусловливающие анафазу В,

подобны тем, которые приводят к расщеплению центросомы и расхождению дочерних центросом с образованием двух полюсов веретена в профазе (см. рис. 13-46). Есть данные о том, что за анафазу В ответственны две отдельные силы: 1} удлинение и скольжение полюсных микротрубочек расталкивают оба полюса, и в то же время 2) другие силы, воздействующие на звезды, тянут полюса в противоположные стороны.

453

Рис. 13-60. Поведение кинетохорных микротрубочек меняется при переходе от метафазы к анафазе. А. В метафазе на плюс-конце микротрубочки у кинетохора происходит добавление субъединиц тубулина, а на минус-конце у полюса-удаление. Таким образом, субъединицы непрерывно перемещаются в сторону полюса, так что микротрубочки сохраняют постоянную длину и остаются под натяжением. Б. В анафазе натяжение снимается и кинетохор начинает быстро передвигаться по микротрубочке, удаляя при этом субъединицы с ее плюс-конца (слева); в результате этого прикрепленная к нему хроматида перемешается к полюсу веретена. По крайней мере у некоторых организмов движение хроматид

частично обусловлено одновременным укорочением микротрубочек также и у полюса (справа).

хромосому, что в 10000 раз больше силы, необходимой для того, чтобы просто продвигать хромосому через цитоплазму с наблюдаемой скоростью. Очевидно, должен существовать какой-то мощный «мотор» для перемещения хромосом, однако скорость их движения должна лимитироваться не вязкостью среды, а чем-то другим. Как уже отмечалось, тот же «мотор» мог бы осуществлять стягивание хромосом в метафазную пластинку.

По мере того как хромосомы движутся к полюсам, микротрубочки, прикрепленные к их кинетохорам, распадаются, так что в телофазе их почти не видно. Участок, где происходит потеря ими субъединиц, можно определить, введя в клетку меченый тубулин во время метафазы. Было установлено, что меченые субъединицы сначала добавляются к тому концу микротрубочки, который связан с кинетохором, а затем теряются в ходе анафазы А. Это указывает на то, что кинетохор в анафазе как бы «проедает» свой путь к полюсам вдоль своих микротрубочек. В пользу такого вывода говорит и тот факт, что анафазные кинетохоры движутся в сторону стационарной метки, поставленной на микротрубочки. Распад микротрубочек у кинетохоров, полюсов или в обоих этих местах, вероятно, необходим для перемещения хромосом к полюсам (рис. 13-60), так как их движение прекращается, если деполимеризацию микротрубочек блокировать добавлением таксола или D2O.

Механизм, с помощью которого кинетохор, а вместе с ним и хромосома движется по веретену во время анафазы А, остается неизвестным. Две его возможные модели схематически представлены на рис. 13-61. Согласно первой модели, кинегохор при движении вдоль прикрепленной к нему микротрубочки гидролизует АТР, а плюс-конец микротрубочки по мере его обнажения деполимеризуется. В другой модели деполимеризация микротрубочки сама по себе приводит к пассивному движению

454

Рис. 13-61. Создание кинетохором силы, движущей хромосому к полюсу в анафазе: две альтернативные модели. А. В кинетохоре имеются «шагающие» белки, сходные с динеином или кинезином; они продвигаются по микротрубочке, используя для этого энергию гидролиза

АТР (разд. 10.4.9). Б. Движение хромосом обусловлено распадом микротрубочек: по мере того как субъединицы тубулина диссоциируют, кинетохор, чтобы сохранить связь с микротрубочкой, должен скользить в направлении полюса. Те же механизмы могут использоваться у полюса веретена, который тоже, видимо, способен сохранять связь с микротрубочками, допуская в то же время их контролируемую деполимеризацию (см.

рис. 13-60).

кинетохора. оптимизирующему энергию связывания его с микротрубочкой. Третья возможность, не показанная на рис. 13-61, состоит в том. что микротрубочки не ответственны прямо за возникновение силы, движущей кинетохор к полюсам, а просто регулируют движение, вызываемое какой-то другой структурой. Предполагали, например, что существует система эластичных белковых нитей (возможно, сходных с очень длинными эластичными филаментами поперечнополосатой мышцы - см. разд. 11.1.13), которые связывают кинетохор с полюсом и постепенно подтягивают к нему.

Независимо от природы механизма, создающего силу, нужно еще объяснить драматическое изменение в полимеризации микротрубочек у кинетохора при переходе от метафазы к анафазе (в метафазе преобладает полимеризация, в анафазе - распад, см. рис. 13-60). Возможно, что это связано просто с резким уменьшением тянущего усилия, приложенного к кинетохору, в анафазе; ослабление натяжения могло бы непосредственно изменять динамику полимеризации микротрубочек или же приводить к химическим изменениям в кинетохоре.

13.5.10. В анафазе В, возможно, действуют две различные силы [44]

В анафазе В увеличивается расстояние между двумя полюсами веретена, и в отличие от анафазы А это сопровождается сборкой микротрубочек. По мере расхождения полюсов полюсные микротрубочки между ними удлиняются, по-видимому путем сборки на своих дистальных плюс-концах.

И удаление полюсов веретена друг от друга в анафазе, и степень перекрывания полюсных микротрубочек в экваториальной зоне сильно варьируют от вида к виду. Зона перекрывания микротрубочек веретена особенно велика у многих диатомовых водорослей (рис. 13-62), у которых митоз происходит внутри ядерной оболочки (разд. 13.5.18), Как показала кропотливая реконструкция трехмерной структуры целых веретен диатомовых водорослей по сотням серийных срезов для электронной микроскопии, у этих водорослей полюсные микротрубочки обоих полуверетен перекрываются в центральной зоне, вблизи от экватора веретена. В анафазе эти две группы антинараллельных микротрубочек, повидимому, скользят друг по другу, расходясь в противоположные стороны.

Анафазные движения можно также изучать на лизированных клетках

455

Рис. ІЗ-62. Эти электронные микрофотографии показывают, как удлиняется веретено и уменьшается степень перекрывания полюсных микротрубочек при митозе у диатомовой водоросли. А. Метафаза. Б. Поздняя анафаза. (С любезного разрешения Jeremy D. Pickett-Heaps.)

диатомей. В такой модельной системе митотическое веретено легко доступно для макромолекул, так что на ней можно испытывать действие различных макромолекулярных агентов, в том числе и специфических антител. Ингибиторы, присоединяющиеся к актину или миозину (в частности, антитела к миозину) не оказывают никакого влияния на движение анафазных хромосом, так что за это движение вряд ли ответственна актомиозиновая система вроде той, которая действует в мышцах. Вместо этого силу здесь могли бы создавать белки, подобные динеину, связанному с микротрубочками в ресничках и жгутиках (разд. 11.3.7), или кинезину, участвующему в быстром аксонном транспорте (разд. 10.4.9). Эти два белка присоединяются к микротрубочкам и вызывают направленное движение за счет гидролиза АТР. но пока не известно, играют ли они существенную роль в митозе.

В клетках высших организмов перед формированием веретена ядерная оболочка разрушается, и поэтому астральные микротрубочки (те, которые направлены от митотического веретена, см. рис. 13-56) могут играть более важную роль в анафазе В, чем у диатомовых. Например, в яйцах некоторых морских беспозвоночных можно разрушить микротрубочки веретена, не блокируя при этом анафазу В. Это позволяет думать, что полюса веретена раздвигаются под влиянием тянущих сил - вероятно, в результате притяжения между астральными микротрубочками и кортексом клетки. Сходные взаимодействия могли бы играть роль и в случаях асимметричного деления клетки (разд. 13.5.13).

456

13.5.11. В телофазе ядерная оболочка образуется сначала вокруг отдельных хромосом [45]

К концу анафазы хромосомы полностью разделяются на две идентичные группы, по одной у каждого полюса веретена. В последней стадии митоза-телофазе-вокруг каждой группы хромосом вновь образуется ядерная оболочка, так что получаются два дочерних интерфазных ядра.

Всвязи с распадом и восстановлением ядерной оболочки нужно рассмотреть по меньшей мере три ее компонента:

1)наружную и внутреннюю ядерные мембраны, являющиеся продолжением мембран эндоплазматического ретикулума;

2)лежащую под ними ядерную ламину - тонкую двумерную сеть промежуточных филаментов, состоящих из ядерных ламииов, которая взаимодействует с внутренней ядерной мембраной, хроматином и ядерными порами (разд. 11.5.5);

3)ядерные поры, образованные крупными комплексами из недостаточно охарактеризованных белков (разд. 8.3.1).

В профазе многие белки фосфорилируются. Если фосфорилирование молекул гистона Н1, по-видимому, способствует конденсации хромосом (разд. 13.1.10), то фосфорилирование ядерных ламинов участвует в регуляции распада и восстановления ядерной оболочки. Фосфорилирование ламинов происходит во многих различных участках каждой полипептидной цепи и поэтому приводит к их распаду и, как следствие, к разрушению ядерной ламины. Затем - вероятно, в ответ на другой сигнал - сама ядерная оболочка распадается на, мелкие мембранные пузырьки.

Резкий переход от метафазы к анафазе, по-видимому, приводит к дефосфорилированию многих белков (в том числе молекул гистона Н1 и ламинов), которые были фосфорилированы в профазе. Вскоре после этого, в телофазе, пузырьки ядерной мембраны связываются с поверхностью отдельных хромосом и сливаются, восстанавливая ядерные мембраны, которые лишь частично окружают группы хромосом перед полным восстановлением ядерной оболочки (рис. 13-63); одновременно восстанавливаются и ядерные поры, а дефосфорилированные ламины

Рис. 13-63. Схема циклических изменений ядерной оболочки во время митоза. В прометафазе ядерные мембраны распадаются на мелкие пузырьки и вновь восстанавливаются в телофазе. Между этими двумя фазами, когда ядерная оболочка разрушена, а ядерные поры и ядерная ламина распались на субъединицы, осуществляются все процессы, в результате которых два набора хромосом расходятся к противоположным полюсам.

Как показано на рисунке, новая ядерная оболочка каждой дочерней клетки образуется в результате слияния мембранных пузырьков вокруг группирующихся индивидуальных хромосом; при этом большая часть цитоплазматических компонентов не попадает в новое ядро.

457

вновь агрегируют, образуя ядерную ламину. Один из белков ламины (ламин В) на протяжении всего митоза остается связанным с фрагментами ядерной мембраны и, возможно, способствует их воссоединению в телофазе. После восстановления ядерной оболочки возобновляется синтез РНК, что ведет к появлению ядрышка (разд. 9.4.19), а хроматин деконденсируется и переходит в дисперсное состояние, характерное для интерфазы.

И распад, и восстановление ядерной структуры могут происходить в неочищенных экстрактах яиц Xenopus, разумеется, если эти экстракты приготовлены из клеток соответствующих стадий клеточного цикла (из мнтотических для распада и из интерфазных для восстановления). В таких экстрактах весь процесс, в котором участвуют ламина, ядерные поры и ядерные мембраны, протекает, по всей видимости, нормально в ответ на циклы фосфорилирования и дефосфорилирования. Таким образом, подобные системы in vitro могут служить тест-объектами при идентификации и очистке белков, катализирующих распад и восстановление ядерной оболочки в клетке, в том числе и белков (таких, как MPF), регулирующих эти процессы. Для восстановления ядра к таким экстрактам нужно добавлять ДНК, причем полное восстановление ядерной оболочки происходит вокруг очищенных молекул ДНК, взятой от любого организма, даже от бактериального вируса. Таким образом, хотя здесь и должны участвовать белки, связывающиеся с ДНК, маловероятно, чтобы при этом распознавались специфические последовательности нуклеотидов.

Интересно, что распад ядерной оболочки не является необходимым для митоза. Действительно, позднее мы увидим, что у низших эукариот ядерная оболочка во время митоза не разрушается; принято говорить, что эти организмы обладают не «открытым», а «закрытым» веретеном.

13,5.12. Метафазу и интерфазу можно рассматривать как альтернативные «устойчивые» состояния клетки [46]

На рис. 13-64 схематически представлена одна из современных гипотез относительно митотического цикла. В ней принята в некотором смысле точка зрения химика на митоз, где интерфаза и метафаза рассматриваются как два альтернативных «устойчивых» состояния клетки, а другие стадии митоза - просто как необходимые переходные состояния между ними. Предполагается, что в конце интерфазы происходит включение некоего механизма («М-фазного переключателя»), побуждающего клетку проходить через профазу и прометафазу до более устойчивого метафазного состояния. В конце метафазы этот механизм внезапно выключается, и клетка проходит через анафазу и телофазу, возвращаясь к интерфазе, которая при выключенном регуляторе наиболее устойчива.

Рис. 13-64. За переход клеток в фазу М и выход из нее, возможно, ответствен некий митотический переключатель с двумя состояниями- «включено» и «выключено». Согласно этой гипотезе, включение приводит к фосфорилированию многих белков, происходящему только в митотической клетке. Серия структурных изменений, связанных со сборкой веретена, не требует специальных триггеров: скорее это ряд

энергетически выгодных этапов на пути к стабильному метафазному состоянию. Это состояние продолжается до тех пор, локa анафазный триггер не поставит переключатель в положение «выключено», а дефосфорилирование белков не восстановит прежние глобальные параметры. Это запускает новую серию структурных изменений (включая расхождение хромосом), что опять приводит клетку к стабильному интерфазному состоянию.

458

Такую точку зрения на митоз подкрепляют данные об изменениях, происходящих с микротрубочками цитоскелета (см. рис. 13-48), а также о внезапных изменениях в активности и степени фосфорилирования некоторых белков, участвующих в митозе, на границах интерфаза/профаза (включение) и метафаза/анафаза (выключение) (см. разд. 13.1.10). Положение «переключателя» могло бы соответствовать уровню активности MPF в клетке (см. обсуждение цикла MPF в разд. 13.1.11 и рис. 13-15).

13-30

13.5.13. Митотическое веретено определяет место, где происходит разделение цитоплазмы при цитокинезе

Во время цитокинеза разделяется цитоплазма. Хотя деление ядра и разделение цитоплазмы, как правило, взаимосвязаны, эта связь не всегда неразрывна. Даже в норме за делением ядра может не следовать цитокинез. Например, в раннем зародыше Drosophila происходит В циклов ядерных делений без разделения цитоплазмы; в результате образуется одна большая клетка с 6000 ядер, расположенных в один слой около ее поверхности. Одноядерные клетки образуются позже при дроблении цитоплазмы вокруг всех этих ядер (разд. 16.5.2),

Хотя митозу не всегда непосредственно сопутствует цитокинез, митотическое веретено играет важную роль в определении того, когда и как он будет происходить. Цитокинез обычно начинается в анафазе, продолжается во время телофазы и захватывает часть последующего

Рис. 13-65. Начало дробления яйца лягушки. Микрофотографии, полученные с помощью сканирующего электронного микроскопа. Образование борозды обусловлено активностью сократимого кольца, находящегося под мембраной. А. Вид клеточной поверхности при малом

увеличении. Б. Участок борозды при большом увеличении. (H.W. Beams. R.G. Kessel, Am. Sci. 64: 279-290, 1976.)

459

Рис. 13-66. Опыт, демонстрирующий влияние положения веретена на плоскость деления. Если митотическое веретено механически сместить на одну сторону клетки, то борозда дробления не дойдет до противоположной стороны клетки. Последующие деления будут происходить

не только по экваторам двух митотических веретен (как это происходит в норме), но и между двумя соседними звездами, не связанными митотическим веретеном. Видимо, сократимый пучок из актиновых филаментов, создающий борозду дробления, всегда образуется в участке, лежащем посередине между двумя звездами. Это означает, что звезды каким-то образом изменяют окружающую область клеточного кортекса. периода интерфазы. Первым видимым признаком цитокинеза у животных клеток бывает образование небольшой складки плазматической мембраны, появляющейся в анафазе и называемой бороздой деления (рис. 13-65). Эта борозда всегда образуется в плоскости метафазной пластинки, под прямым углом к длинной оси митотического веретена. Если в анафазе на достаточно раннем этапе веретено переместить с помощью микроманипулятора, то наметившаяся борозда исчезнет и появится новая в соответствии с новым положением веретена. Изящные опыты на яйцах морского ежа Echinarachnius показывают, что борозда дробления будет формироваться посередине между звездами, образовавшимися из двух центросом, даже если центросомы не связаны митотическим веретеном (рис. 13-66). Позднее, когда процесс зашел уже достаточно далеко,

цитокинез будет продолжаться и в том случае, если веретено и его звезды удалить пипеткой или разрушить колхицином.

Большинство клеток делится симметрично. Борозда деления образуется по экватору родительской клетки, так что дочерние клетки будут одинаковой величины и с примерно одинаковыми свойствами. В период эмбрионального развития, однако, бывает много случаев, когда клетки делятся асимметрично: борозда разделяет две разные клетки, которые будут развиваться разными путями. Деления такого рода часто строго определены пространственно. Например, они могут происходить в определенных плоскостях по отношению к поверхности эпителиального пласта или приводить к обособлению участков цитоплазмы с разными наборами органелл. Независимо от того, будет ли деление симметричным или асимметричным, положение борозды, а значит, и плоскости деления всегда определяется положением митотического веретена. При надобности веретено может запрограммированным образом поворачиваться, занимая нужное положение в клетке и соответственно ориентируя плоскость деления (рис. 13-67). Кажется вероятным, что эти движения веретена определяются изменениями в отдельных участках клеточного кортекса, который сдвигает полюса веретена с помощью микротрубочек звезды. Видимо, сходный механизм определяет положение центросомы в поляризованной клетке (разд. 11.4.5). Структура кортекса, который богат актином, рассмотрена в гл. 11 (разд. 11.2).

Микротрубочки и пучки актиновых филаментов, находившиеся в интерфазной цитоплазме, во время митоза разрушаются. Однако цитоплазматические промежуточные филаменты во многих клетках сохраняются в целости. В таких клетках сеть промежуточных филаментов, окружающая интерфазное ядро, во время митоза растягивается, охватывая оба дочерних ядра, и в конце концов расчленяется на две части бороздой деления (рис. 13-68).

13.5.14. Актин и миозин создают силу, необходимую для цитокинеза

Разделение цитоплазмы происходит в результате сокращения кольца, состоящего главным образом из актиновых филаментов. Этот пучек

460

Рис. 13-67. Точно запрограммированный поворот митотического веретена на двуклеточной стадии зародыша нематоды Caenorhabditis elegans при подготовке к делению с образованием четырех определенным образом расположенных клеток. (С любезного разрешения John White.) филаментов, называемый сократимым кольцом (рис. 13-69), прикрепляется к внутренней стороне плазматической мембраны с помощью неидентифицированных белков. Сократимое кольцо образуется в начале анафазы, и механизм его сборки неизвестен; сила, которую оно создает, достаточна, чтобы согнуть тонкую стеклянную иглу, введенную в клетку. Нет сомнения в том, что источником силы здесь, так же как и в мышцах, служит взаимное скольжение актиновых и миозиновых филаментов. Например, в лизированных митотических клетках добавление субфрагментов инактивированного миозина блокирует миозин-связывающие участки актина, останавливая таким образом разделение цитоплазмы. Точно так же введение антител к миозину в яйца морского ежа вызывает сглаживание борозды дробления, но на ядерный митоз не влияет. Тем не менее в точности не известно, как взаимодействие актина и миозина втягивает плазматическую мембрану в борозду дробления.

В процессе нормального деления клетки сократимое кольцо не становится толще по мере углубления борозды. Это позволяет предполагать, что оно постепенно уменьшается в объеме за счет потери части филаментов. После завершения цитокинеза сократимое кольцо полностью распадается, а плазматическая мембрана в области борозды стягивается, окружая так называемое остаточное тельце, которое еще связывает две дочерние клетки. Остаточное тельце содержит остатки двух групп полярных микротрубочек, тесно упакованных вместе с материалом плотного матрикса (рис. 13-70).

Цитокинез, при котором из одной клетки образуются две, сильно увеличивает общую площадь клеточной поверхности. Поэтому двум дочерним клеткам требуется больше материала плазматической мембраны, чем исходной клетке. В животных клетках биосинтез вещества мембраны непосредственно перед делением усиливается. Избыточная мембрана у готовящихся к делению клеток, по-видимому, хранится в виде выступов (blebs) на их поверхности.

13.5.15. У высших растений цитокинез осуществляется совершенно иным способом [49]

Большинство клеток высших растений окружено жесткой клеточной стенкой, и поэтому механизм цитокинеза существенно отличается от только что описанного для животных клеток. Вместо образования двух дочерних клеток путем их отшнуровки с помощью сократимого кольца, лежащего под поверхностью клетки, цитоплазма разделяется здесь в результате образования новой стенки на границе между дочерними клетками. Образующаяся перегородка точно определяет относительное положение двух новых клеток в растении. Из этого следует, что ориентация плоскостей клеточного деления и увеличение размеров клеток определяют форму растения (см. гл. 20).

Рис. 13-68. Во время митоза зону ядра окружает пучок промежуточных филаментов. Микрофотографии получены после окрашивания пермеабилизиро ванных клеток флуоресцентными антителами, которые связываются с промежуточными филаменгами. А -анафаза; Б-ранняя телофаза {стрелками указано положение сократимого кольца); В-поздняя телофаза. (S. Н. Blose, Ргос. Natl. Acad. Sci. USA 76: 3372-3376, 1979.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]