Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

491

родой, числом и расположением сахарных боковых цепей. Гликопротеины обычно содержат от 1 до 60% углеводного компонента в виде многочисленных относительно коротких (как правило, менее 15 сахарных остатков) разветвленных олигосахаридных цепей, связанных с атомами кислорода и азота; эти цепи имеют переменный состав и часто оканчиваются сиаловой кислотой (разд. 8.7.1). Хотя сердцевинный белок протеогликана сам может быть гликопротеином, протеогликаны могут содержать по массе до 95% углевода, большая часть которого представлена различным числом (от одной до нескольких сотен) неразветвленных цепей гликозаминогликана, в типичных случаях каждая примерно из 80 сахарных остатков, обычно без сиаловой кислоты. Кроме того, если гликопротеины редко имеют мол. массу больше 3-105, то протеогликаны могут быть значительно крупнее. Например, один из наиболее полно охарактеризованных протеогликанов - главный компонент хряща, - как правило, содержит около 100 цепей хондроитинсульфата и примерно 50 цепей кератансульфата, связанных с сердцевинным белком, который богат серином и состоит из более чем 2000 аминокислот. Его общая молекулярная масса составляет около 3 • 106, что соответствует примерно одной цепи гликозаминогликана на каждые 20 аминокислотных остатков (рис. 14-27). С другой стороны, многие протеогликаны значительно меньше и имеют только от 1 до 10 гликозаминогликановых цепей.

В принципе строение протеогликанов допускает почти неограниченное разнообразие. Они могут существенно различаться по содержанию белка, по величине молекул и по числу и типу гликозаминогликановых цепей в молекуле. Кроме того, хотя для них всегда характерны повторяющиеся последовательности дисахаридов, длина и состав цепей гликозаминогликанов могут сильно варьировать, так же как и пространственное расположение гидроксильных, сульфатных и карбоксильных групп вдоль цепи. Поэтому задача идентификации и классификации протеогликанов по содержащимся в них сахарам чрезвычайно сложна. К настоящему времени многие сердцевинные белки секвенированы с помощью метода рекомбинантной ДНК, и в будущем классификация протеогликанов, вероятно, станет более осмысленной, когда будет основана на структуре их сердцевинных белков, а не гликозаминогликанов.

Рис. 14-26. Схема соединения гликозаминогликановой цепи с серином сердцевинного белка в молекуле протеогликана. К серину [который часто находится внутри последовательности Asp (или Glu)-Asp-(или Glu)-X-Ser-Gly-X-Giy, где X -любая аминокислота] присоединен специфический «линкерный трисахарид». Остальная часть цепи гликозаминогликана, построенная в основном из повторяющихся дисахаридных единиц (состоящих в свою очередь из двух моносахаридов А и В, приведенных в табл. 14-2), синтезируется позднее путем последовательного

присоединения сахарных остатков.

Рис. 14-27. Молекула главного протеогликана хряща. Она состоит из множества гликозаминогликановых цепей, ковалентно связанных с сердцевинным белком. В дополнение к гликозаминогликановым цепям сердцевинный белок содержит еще олигосахаридные цепи, присоединенные

к атомам азота или кислорода (на рисунке не показаны). Большинство протеогликанов меньше того, который здесь изображен, и гликозаминогликановые цепи у них часто имеются лишь в определенных областях полипептидной цепи сердцевинного белка. Внизу для сравнения в том же масштабе изображена молекула типичного гликопротеина (панкреатической рибонуклеазы В).

492

14.2.5. Цепи гликозаминогликанов могут располагаться во внеклеточном матриксе высокоуноридоченным образом [13]

Ввиду структурной гетерогенности молекул протеогликанов кажется маловероятным, чтобы их роль сводилась лишь к созданию гидратированного пространства вокруг клеток и между ними. Было показано, что in vitro протеогликаны связывают различные секретируемые сигнальные молекулы, и можно предполагать, что они выполняют эту функцию и в тканях, локализуя таким образом действие сигнальных лигандов; например, фактор роста фибробластов (разд. 13.3.1, табл. 13-1) связывается с протеогликаном гепарансульфатом как in vitro, так и в тканях. Протеогликаны могут образовывать гели с разной величиной пор и разной плотностью зарядов и служить фильтрами, регулирующими движение молекул и клеток в соответствии с их размерами и/или зарядом. Судя по некоторым данным, протеогликаны выполняют подобную функцию в базальной мембране почечных клубочков, фильтрующей молекулы из кровотока в мочу (разд. 14.2.16).

Способ организации гликозаминогликанов и протеогликанов во внеклеточном матриксе еще плохо изучен. Биохимические исследования показывают, что в матриксе эти молекулы специфическим образом связаны друг с другом и с фибриллярными белками. Было бы странным, если бы такие взаимодействия не играли никакой роли в организации матрикса. Было установлено, что главный протеогликан хряща, содержащий кератансульфат и хондроитинсульфат (см. выше), организован во внеклеточном матриксе в крупные агрегаты, нековалентно связанные через свои сердцевинные белки с макромолекулой гиалуроновой кислоты. Примерно 100 мономеров протеогликана связаны с одной цепью гиалуроновой кислоты, образуя гигантский комплекс с мол. массой в 100 млн. или больше, занимающий объем, равный объему бактерии. Выделенный из ткани, этот комплекс хорошо виден в электронном микроскопе (рис. 14-28).

Рис. 14-28. А. Электронная микрофотография агрегата протеогликанов из эмбрионального хряща коровы (напыление платиной). Видно также много свободных молекул протеогликана. Б. Схема строения гигантского протеогликанового агрегата, показанного на фото А. Он состоит

примерно из сотни протеогликановых мономеров (вроде изображенного на рис. 14-27), нековалентно присоединенных к одной молекуле гиалуроновой кислоты с помощью двух связующих белков, которые одновременно соединены как с сердцевинным белком протеогликана, так и с цепью гиалуроновой кислоты, и стабилизируют таким образом агрегат. Молекулярная масса такого комплекса может достигать 108 и более, а занимаемый им объем равен объему бактериальной клетки (около 2- 10-12 см3). (А-с любезного разрешения Lawrence Rosen-berg.)

493

Однако попытки определить с помощью электронной микроскопии пространственное расположение молекул протеогликана, когда они находятся в ткани, оказались безуспешными. Так как эти молекулы хорошо растворимы в воде, при фиксации они легко вымываются из внеклеточного матрикса во время обработки срезов в водных растворах. Недавно протеогликаны удалось увидеть в почти нативном состоянии в хряще, быстро замороженном при очень низкой температуре (— 196°С) и высоком давлении с последующей фиксацией и окраской в замороженном состоянии (рис. 14-29). Вместо этого можно использовать катионный краситель с относительно низкой плотностью заряда в сочетании с более традиционной фиксацией. При таком окрашивании протеогликаны сухожилия из хвоста крысы выглядят как нитевидные структуры, обвивающие коллагеновые фибриллы с регулярными интервалами около 65 нм (рис. 14-30). Такой интервал соответствует продольному смещению параллельных молекул коллагена относительно друг друга в этих фибриллах (разд. 14.2.8). Такого рода упорядоченное расположение молекул, вероятно, весьма обычно во внеклеточном матриксе, и при том разнообразии, которое свойственно молекулам коллагена и прогеогликанов, могут получаться сложные и многообразные структуры.

Известно, что из некоторых полисахаридных цепей создаются высокоупорядоченные спиральные или лентовидные образования. Например, у высших растений микрофибриллярный компонент клеточных стенок построен из цепей целлюлозы (полиглюкозы), плотно упакованных в лентовидную кристалл о подобную структуру (см. рис. 20-5). In vitro две различные полисахаридные цепи могут специфически взаимодействовать друг с другом, образуя участки с регулярной спиральной структурой (рис. 14-31); такое межполисахаридное взаимодействие могло бы проис-

Рис. 14-29. Электронная микрофотография протсогликанов внеклеточною матрикса из хряща крысы. Ткань была быстро заморожена при —196 С, зафиксирована и окрашена в замороженном состоянии (процесс, называемый замещением в замороженном состоянии), чтобы

предотвратить сжатие протеогликановых цепей. Видно, что молекулы протеогликанов образуют тонкую волокнистую сеть, в которую погружено одно поперечноисчерченное коллагеновое волокно. Более темные участки протео-гликановых молекул сердцевинные белки; более светлые нити--

цепи гликозаминогликана. (Е. В. Hunziker, R.K. Schcnk, J. cell Biol. 98: 277-282, 1985 by copyright permission of the Rockefeller Univ. Press.)

Рис. І 4-30. Электронная микрофотография продольного среза сухожилия из хвоста крысы. Препарат контрастирован медьсодержащим красителем для выявления молекул протеогликанов. Сухожилие состоит из плотно упакованных коллатеновых фибрилл; несколько таких фибрилл видны на фотографии. Молекулы протеогликана имеют вид тонких нитей, окружающих каждую коллагеновую фибриллу через равные интервалы примерно в 65 нм (например, указанные стрелками b); это указывает на специфическое взаимодействие молекул коллагена и протеогликанов. В тех местах, где не видно протеогликановых нитей, пересекающих коллагеновые фибриллы (как в участке, отмеченном двойной стрелкой а), плоскость

среза, видимо, прошла прямо через фибриллу. (J. E. Scott, Biochem. J. 187: 887-891, 1980. Copyright 1980. Amer. Chem. Soc.)

494

Рис. 14-31. Некоторые из упорядоченных конформаций, которые могут принимать две разные полисахаридные цепи, А и Б, при образовании геля in vitro. Поскольку взаимодействие между молекулами ограничено определенными участками их цепей (так называемыми соединительными участками) и не распространяется на всю молекулу, каждая цепь может объединиться более чем с одним партнером и таким

путем образовать решетку геля. К гелеобразующим полисахаридам относятся, в частности, агары (из водорослей) и пектины (из высших растений).

ходить и во внеклеточном матриксе. Если конформаций молекул протеогликанов могут быть столь же разнообразными, как их химическое строение, то мы едва только начинаем понимать их организацию.

Не все протеогликаны являются секретируемыми компонентами внеклеточного матрикса. Некоторые из них входят в состав плазматической мембраны, и иногда такие протеогликаны содержат сердцевинный белок, ориентированный поперек липидного бислоя. Протеогликаны клеточных мембран обычно состоят лишь из небольшого числа гликозаминогликановых цепей и, по-видимому, играют какую-то роль в прикреплении клеток к внеклеточному матриксу и в организации макромолекул матрикса, секретируемых клетками.

14-12

14.2.6. Главный белок внеклеточного матрикса - коллаген

Коллагены - это семейство весьма своеобразных фибриллярных белков, имеющихся у всех многоклеточных животных. Они секретируются главным образом клетками соединительной ткани и у млекопитающих занимают среди белков первое место по количеству, составляя около 25% всего белка. Характерная особенность молекул коллагена - их жесткая трехцепочечная спиральная структура. Три полипептидные цепи, называемые α-цепями (каждая примерно из 1000 аминокислот), скручены в одну регулярную суперспираль наподобие каната и образуют молекулу коллагена длиной около 300 нм и толщиной 1,5 нм. Коллагены содержат очень много пролина и глицина, которые оба играют

Рис. 14-32. А. Модель одной α-цепи коллагена, в которой каждая аминокислота представлена шариком. Цепь образует левозакрученную спираль с тремя аминокислотными остатками на один виток и с глицином (выделен темным цветом) в каждой третьей позиции. Таким образом, α- цепь состоит из длинной серии триплетов Gly-X-Y, где X и Y могут быть любой аминокислотой (хотя обычно одна из них - пролин). Б. Модель участка молекулы коллагена, в которой три α-цепи скручены в спиральный жгут. Одна α-спираль выделена светло-красным цветом, другая - серым, а третья - белым. Глицин - единственная аминокислота, которая достаточно мала, чтобы помещаться в тесном осевом пространстве тройной спирали. Показана только небольшая часть молекулы; вся молекула достигает в длину около 300 нм, а каждая цепь состоит примерно из 1000 аминокислотных остатков. (Зарисовки с модели В. L. Trus.)

495

495 Таблица 14-3. Четыре главных типа коллагена и их свойства

Тип

Формула11

Полимерная форма

Отличительные черты

 

Местонахождение в организме

 

 

 

 

 

I

[al(I)]2α2(I)

Фибрилла

Мало гидроксилизина, мало углевода,

Кожа, сухожилия, кость, связки,

 

 

 

толстые фибриллы

 

роговица,

внутренние

органы

 

 

 

 

 

 

(составляет 90% всего коллагена в

 

 

 

 

 

 

организме)

 

II

[α 1(II)]3

Фибрилла

Много гидроксилизина, много углевода,

Хрящ, межпозвоночные диски,

 

 

 

фибриллы тоньше, чем у типа I

 

хорда, стекловидное тело глаза

III

[α 1(ІІІ)]3

Фибрилла

Много

гидроксипролина,

мало

Кожа,

кровеносные

сосуды,

 

 

 

гидроксилизина, мало углевода

 

внутренние органы

 

IV

[α l(IV)]2α 2(IV)

Базальная мембрана

Очень много гидроксилизина, много

Назальные мембраны

 

 

 

 

углевода; сохраняет концевые пептиды

 

 

 

 

 

 

проколлагена

 

 

 

 

 

1) Обратите внимание, что в коллагенах I и IV два типа α-цепей, а в коллагенах II и III-только один тип α-цепей. В таблице представлены только четыре главных типа коллагена, но сейчас известно более 10 типов коллагена и около 20 типов α-цепей.

важную роль в формировании трехцепочечной спирали. Пролин благодаря своей кольцевой структуре стабилизирует левозакрученную спиральную конформацию каждой a-цепи с тремя аминокислотными остатками на один виток. Глицин, наименьшая из аминокислот (вместо боковой цепи у нее только один атом водорода), повторяется на каждом третьем месте на протяжении всего центрального участка a-цепи; это дает возможность трем спиральным a-цепям плотно прилегать друг к другу с образованием законченной коллагеновой суперспирали (рис. 14-32).

До сих пор идентифицировано около 20 различных цепей коллагена, каждая из которых кодируется отдельным геном. В разных тканях экспрессируются различные комбинации этих генов. Хотя в принципе из таких двадцати a-цепей можно составить более 1000 видов трехцепочечных молекул коллагена, фактически было обнаружено только около 10 видов. Наиболее изучены типы I, II, III и IV (табл. 14-3). Типы I, II и III - фибриллярные коллагены. Это главные типы коллагенов, встречающихся в соединительных тканях, из них особенно широко распространен тип I. После того как молекулы этих трех типов коллагена переходят из клеток в межклеточное пространство, они организуются в упорядоченные полимеры, называемые коллагеновыми фибриллами. Это тонкие (толщиной 10-300 нм) канатовидные структуры длиной во много микрометров, ясно видимые на электронных микрофотографиях (рис. 14-33). Эти фибриллы часто группируются в более крупные пучки толщиной в несколько микрометров, которые видны уже в обычный микроскоп как коллагеновые волокна. Молекулы коллагена типа IV

496

Рис. 14-33. Электронная микрофотография части фибробласта, окруженного коллагеновыми фибриллами, в соединительной ткани. Сильно развитый гранулярный эндоплазматический ретикулум фибробласта отражает способность клетки к активному синтезу и секреции

коллагена и других макромолекул внеклеточного матрикса. (С любезного разрешения Russell Ross.)

встречаются только в базальной мембране, вместо образования фибрилл они организуются в плоскую сеть, которая составляет значительную часть всей базальной мембраны (разд. 14.2.11). Как располагаются в тканях молекулы коллагена остальных типов, неясно.

Многие белки с повторяющимися последовательностями аминокислот возникли в результате дупликаций участков ДНК (разд. 10.5.4). Именно так, видимо, появились и фибриллярные коллагены. Действительно, гены, кодирующие α-цепи таких коллагенов, очень велики (30-40 тысяч п. н.) и содержат около 50 экзонов. Большинство экзонов состоит из 54 или кратного 54 числа нуклеотидов, поэтому можно предположить, что эти коллагены возникли в результате множественных дупликаций первоначального гена, содержавшего 54 нуклеотида; сказанное не относится к коллагену типа IV, который, очевидно, возник другим путем.

14-13

14.2.7. Секретируемые коллагены имеют на обоих концах неспиральные участки [14, 15]

Отдельные полипептидные цепи коллагена синтезируются на рибосомах, связанных с мембраной, и переходят в просвет эндоплазматического ретикулума в виде более длинных предшественников, называемых про-α-цепями. У этих предшественников имеется не только короткий «сигнальный пептид» на аминном конце, необходимый для того, чтобы «протащить» секретируемый белок через мембрану ретикулума (разд. 8.6.5), но и группы других дополнительных аминокислот, называемые пропептидами, на аминном и карбоксильном концах. В просвете эндоплазматического ретикулума остатки пролина и лизина гидроксилируются с образованием гидроксипролина и гидроксилизина соответственно. Затем каждая про-а-цепь с помощью водородных связей объединяется с двумя другими в трехцепочечную спиральную молекулу, известную как проколлаген (рис. 14-34). Секретируемые формы фибриллярных коллагенов (но не коллаген типа IV) во внеклеточном пространстве преобразуются в молекулы коллагена путем отщепления пропептидов (см. ниже).

497

Рис. 14-34. В молекулах фибриллярного коллагена α-цепи вначале синтезируются в форме про-α-цепей, содержащих дополнительные пептиды на обоих концах (выделены черным цветом), которые позднее отщепляются. По-видимому, С-концевой пропептид способствует

формированию тройной спирали при сборке молекулы проколлагена. Обратите внимание, что С-концевые пропептиды в молекуле проколлагена ковалентне соединены между собой дисульфидными связями и часто содержат олигосахаридную цепь. Аминоконцевые пропептиды образуют короткий трехцепочечный «миниколлагеновый» участок. Окончательная молекула коллагена содержит только часть молекулы проколлагена, выделенную красным цветом; остальные участки расщепляются.

В других белках остатки гидроксипролина и гидроксилизина {рис. 14-35) встречаются редко. Почему они присутствуют в коллагене? Есть косвенные указания на то, что гидроксильные группы остатков гидроксипролина образуют водородные мостики между цепями, стабилизирующие трехцепочечную спираль. В частности, условия, препятствующие гидроксилированию пролина (например, недостаток аскорбиновой кислоты - витамина С), ингибируют формирование спирали проколлагена. В нормальных условиях коллагены непрерывно (хотя и медленно) расщепляются специфическими внеклеточными ферментами - коллагеназами. При цинге - заболевании, развивающемся у человека при нехватке витамина С в пище,-негидроксилированные про-α-цепи не способны образовать тройную спираль и тотчас же разрушаются; поэтому в результате постепенной потери существовавшего ранее нормального коллагена в матриксе кровеносные сосуды становятся чрезвычайно хрупкими, а зубы начинают шататься. Это означает, что распад и замещение коллагена происходят здесь относительно быстро. Однако во многих других тканях взрослого организма обновление коллагена (и других макромолекул внеклеточного матрикса) в норме происходит очень медленно; крайним примером может служить кость, где молекулы коллагена существуют около 10 лет до распада и замещения. Для сравнения отметим, что у большинства клеточных белков время полужизни измеряется часами или днями.

Гидроксилирование остатков лизина играет иную роль: оно необходимо для осуществления необычной разновидности гликозилирования (функция которого неизвестна) и имеет решающее значение для поперечной сшивки молекул коллагена при его организации во внеклеточном пространстве (разд. 14.2.9).

14.2.8. Молекулы проколлагена типов I, II и III после их секреции расщепляются с образованием молекул коллагена, которые объединяются в фибриллы [16]

После секреции пропептиды молекул проколлагена типов 1, II и III разрушаются специфическими ферментами уже вне клетки, и проколлаген превращается в коллаген (называемый также тропоколлагеном}. Образовавшиеся молекулы коллагена толщиной 1,5 нм объединяются во внеклеточном пространстве в значительно более крупные коллагеновые фибриллы (толщиной 10-300 нм). Фибриллы образуются частично за

Рис. 14-35. Структура остатков гидроксипролина и гидроксилизина -двух измененных аминокислот, обычно содержащихся в коллагене.

498

счет тенденции молекул коллагена к самосборке. Однако образование фибрилл происходит вблизи клеточной поверхности, часто в глубоких складках плазматической мембраны, и лежащий под нею кортикальный цитоскелет может влиять на место, скорость и ориентацию сборки фибрилл

(разд. 14.2.18).

Пропептиды выполняют по меньшей мере две функции: 1) направляют внутри клетки построение трехцепочечных молекул коллагена; и 2) поскольку они отщепляются только после секреции, они препятствуют образованию внутри клетки крупных коллагеновых фибрилл, что имело бы для клетки катастрофические последствия. Однако столь же важно и избавиться от уже выполнивших свою задачу пропептидов. При некоторых наследственных заболеваниях, например при синдроме Элерса-Дэнлоса, этот процесс нарушен, а потому нарушено и образование коллагеновых фибрилл; в результате больные обладают хрупкой кожей и чрезмерно подвижными суставами.

В электронном микроскопе фиксированные и окрашенные фибриллы коллагена выглядят поперечно исчерченными с периодом 67 нм. Такая картина отражает особенности упаковки отдельных молекул в фибриллу: как показано на рис. 14-36, они располагаются так, что соседние молекулы сдвинуты друг относительно друга почти на четверть своей длины (на 67 нм). Такое расположение, по-видимому, максимально повышает прочность агрегата на растяжение и создает исчерченность, видимую на негативно контрастированных фибриллах (рис. 14-37). Однако все еще не ясно, как при таких сдвигах молекулы упакованы в трехмерной цилиндрической фибрилле.

После того как коллагеновые фибриллы сформировались во внеклеточном пространстве, их прочность сильно возрастает благодаря

созда-

Рис. 14-36. Схема ступенчатого расположения молекул коллагена (они изображены в виде стрелок) в коллагеновой фибрилле. Молекулы в соседних рядах сдвинуты друг относительно друга на 67 нм, а промежутки между молекулами в продольном ряду составляют 35 нм. При такой величине этого промежутка продольное расположение молекул повторяется через каждые пять рядов, так что, например, молекулы в рядах 1 и 6

лежат точно друг против друга.

Рис. 14-37. Эта схема объясняет, каким образом ступенчатое расположение молекул коллагена приводит к поперечной исчерченности фибриллы после негативного контрастирования. Поскольку контрастирующее вещество заполняет только промежутки между молекулами в каждом

ряду, эти промежутки выглядят как темные полосы. Внизу - электронная микрофотография негативно контрастированной фибриллы (любезно предоставлена Robert Horne.)

499

Рис. 14-38. Внутримолекулярные и межмолекулярные сшивки между модифицированными боковыми цепями лизина в коллагеновой фибрилле. Сшивки образуются в несколько этапов. Вначале некоторые остатки лизина и гидроксилизина дезаминируются внеклеточным ферментом лизилоксидазой, и здесь появляются альдегидные группы, обладающие высокой реакционной способностью. Затем эти группы самопроизвольно реагируют с образованием ковалентных связей друг с другом или с другими остатками лизина или гидроксилизина, так что в сшивке может участвовать более двух аминокислотных боковых цепей. Некоторые из образуемых связей относительно нестабильны и в конце

концов модифицируются, превращаясь в разнообразные более стабильные сшивки. Обратите внимание, что большинство сшивок образуется между короткими неспиральными сегментами на обоих концах молекул коллагена (см. рис. 14-35).

нию ковалентных сшивок между остатками лизина внутри коллагеновых молекул и между ними (рис. 14-38). Ковалентные связи такого типа встречаются только в коллагене и эластине. Если блокировать их образование, содержащие коллаген ткани становятся хрупкими и такие структуры, как кожа, сухожилия и кровеносные сосуды, будут легко разрываться. Количество и тип сшивок изменяются от ткани к ткани. Например, в ахилловом сухожилии, для которого прочность на разрыв очень важна, такие сшивки в коллагене особенно многочисленны.

14.2.9. Организация коллагеновых фибрилл во внеклеточном матриксе приспособлена к потребностям ткани [17]

Коллагеновые фибриллы имеют разную толщину и по-разному организуются в различных тканях. Например, в коже млекопитающих они расположены наподобие прутьев в плетеных изделиях и поэтому сопротивляются нагрузкам по всем направлениям. В сухожилии они собраны в параллельные пучки, уложенные вдоль главной оси, а в зрелой костной ткани и роговице их расположение напоминает чередующиеся слои в фанере - фибриллы каждого слоя уложены параллельно друг другу почти под прямым углом к фибриллам соседних слоев. Так же организованы они и в коже головастика (рис. 14-39).

Сами клетки соединительной ткани определяют размер и расположение коллагеновых фибрилл. В клетках могут экспрессироваться один или несколько генов для разных типов молекул фибриллярного проколлагена (в том числе и минорные типы, не представленные в табл. 14-3), и клетки могут таким образом регулировать распределение молекул после их секреции. Контролируя порядок, в котором последовательно отщепляются пропептиды аминного и карбоксильного концов, секретируя наряду с коллагеном различные виды и количества неколлагеновых макромолекул матрикса и направляя формирование коллагеновых фибрилл в тесной взаимосвязи с плазматической мембраной, клетки могут определять геометрию и свойства фибрилл в своем ближайшем окружении. Наконец, образование большего или меньшего числа сшивок в коллагене зависит от требуемой прочности на растяжение. На рис. 14-40 схематически представлены этапы синтеза фибриллярного коллагена и сборки структур высшего порядка.

14.2.10. Клетки могут участвовать в организации секретируемых ими коллагеновых фибрилл, изменяя натяжение матрикса [18]

Есть еще один механизм, с помощью которого выделяющие коллаген клетки определяют пространственную организацию образуемого ими матрикса. Фибробласты воздействуют на выработанный ими коллаген, ползая по нему и растягивая его, что способствует уплотнению его в слои и вытягиванию в волокна. Такая механическая роль фибробластов в структурировании коллагенового матрикса была наглядно продемонстрирована in vitro. Если поместить фибробласты в культуральную чашку с переплетением случайно ориентированных коллагеновых фибрилл, образующих гель, то клетки, передвигаясь, начнут тянуть за

Рис. 14-39. Электронная микрофотография поперечного среза кожи головастика. Видно, что слои коллагеновых фибрилл, подобно слоям дерева в фанере, уложены так, что фибриллы соседних слоев пересекаются под прямым углом. Такое расположение встречается также в зрелой

костной ткани и в роговице. (С любезного разрешения Jerome Gross.)

500

Рис. 14-40. Схема различных внутриклеточных и внеклеточных событий при образовании коллагеновой фибриллы. В качестве примера того, как фибриллы могут упорядочение располагаться во внеклеточном пространстве, показана их последующая сборка в большое коллагеновое волокно, видимое в световой микроскоп. Ковалентные сшивки, стабилизирующие внеклеточные агрегаты, не показаны. У человека известно много

наследственных заболеваний, при которых нарушается образование коллагеновых фибрилл, что не удивительно при столь большом числе ферментативных реакций, участвующих в этом процессе.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]