Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

411

Рис. 13-19. Причинные связи между некоторыми событиями клеточного цикла и их отношение к генам cdc у почкующихся дрожжей. Полюсное тельце веретена (ПТВ) у дрожжей является эквивалентом центросомы. «Старт» означает точку бесповоротного вступления клетки в цикл

деления и потерю возможности половой конъюгации (конъюгация может осуществляться только в фазе G1). A.. Общая схема цикла; стрелка, идущая от события а (или от событий а к б) к событию в, означает, что событие е не может произойти раньше события а (или а и б вместе).

Цифрами обозначены специфические мутации cdc, которые при рестриктивной температуре приводят к остановке клеток в данной точке цикла. Например, клетки с мутацией cdc8 останавливаются во время синтеза ДНК. Обратите внимание на то, что хромосомный цикл (цикл ДНК), цитоплазматический цикл (цикл формирования почки) и центросомный цикл (цикл ПТВ) частично независимы. Б. Блокированные состояния четырех мутантов cdc, указанных на схеме А, при высокой температуре. [По данным L. Н. Hartwell, J. Cell Biol. 77: 627-637, 1978; J. R. Prmgle, L.H. Hartwell. In: The Molecular Biology of the Yeast Saccharomyces (J. N. Stern et al., eds.), pp. 97-142. Cold Spring Harbor Laboratory, 1981.]

деле, и в ходе нормального развития таким способом часто возникают многоядерные клетки (разд. 16.5.2).

13.2.3. Регуляция размеров клетки зависит от факторов контроля клеточного цикла, действующих в точке старта

Скорость роста простых свободноживущих организмов, таких как дрожжи, зависит главным образом от поступления питательных веществ. В условиях нехватки пищи дочерние клетки при быстрых циклах клеточного деления становились бы чрезвычайно мелкими; поэтому клеткам необходим механизм, регулирующий скорость прохождения клеточного цикла и, в частности, хромосомного цикла в соответствии со скоростью роста клетки (рис. 13-20). Как осуществляется такая регуляция?

И синтез ДНК, и митоз - это сложные динамические процессы, которые трудно замедлить или прервать в условиях нехватки питательных веществ. У дрожжей, как и у большинства других эукариотических организмов, продолжительность этих фаз цикла остается более или менее постоянной, несмотря на большую изменчивость внешних условий. Вместо этого во время голодания обычно удлиняется фаза G:, хотя у делящихся дрожжей имеется также важный регулирующий механизм, называемый митотическим контролем, который действует в фазе G2.

Если продолжительность фазы G1 может меняться под влиянием внешних факторов, а S-фаза не изменяется, то в G1 должна существовать критическая точка, где начинается последовательность событий S-фазы, и внешние факторы уже не действуют на дальнейший ход клеточного цикла. Такую критическую точку называют точкой старта (Start). Для большинства эукариотических клеток точка старта (или эквивалентная ей точка рестрикции у клеток млекопитающих) отмечает момент перехода к безостановочному завершению цикла клеточного деления.

13.2.4. Клетки проходят через точку старта только после достижения критических размеров [14]

Для клетки почкующихся дрожжей в среде, бедной питательными веществами, фаза G1 является периодом медленного роста, когда хромосомный цикл, видимо, приостановлен; выход из G1 т. е. прохож-

412

Рис. 13-20. Зависимость между скоростью роста, размерами клетки и циклом деления у свободноживущего организма, такого как дрожжи. А. Если при недостатке пищи клетки продолжают делиться с прежней скоростью, то дочерние клетки после каждого деления будут

становиться все мельче до тех пор, пока масса каждой из дочерних клеток не сравняется с тем малым количеством вещества, которое синтезируется за время одного цикла. Б. Обычно при нехватке питательных веществ дрожжевые клетки замедляют темп деления: поскольку клетка не может пройти определенную точку цикла, не достигнув некоторых «стандартных» размеров, деление замедляется и величина клеток остается более или менее постоянной. (За единицу времени выбрана наблюдаемая длительность цикла при избытке питательных веществ.)

дение через точку старта, происходит лишь после того, как клетка достигнет некоторых стандартных размеров (рис. 13-20, Б). В более богатой среде G1 короче, но величина клетки при прохождении точки старта практически такая же; и если подобрать условия роста, при которых дочерние клетки после деления будут ненормально крупными или ненормально мелкими, то они соответственно сократят или продлят время своего пребывания в фазе G1 так, чтобы пройти через точку старта, имея стандартные размеры.

О том, как клетки «чувствуют» свою величину, мало что известно, хотя многие данные указывают на то, что какой-то механизм для этого существует. Например, если у растущей гигантской амебы Amoeba proteus многократно отрезать часть цитоплазмы, не позволяя таким клеткам достичь нормальных размеров, то она не будет делиться даже на протяжении нескольких недель, несмотря на энергичный рост, тогда как контрольная клетка делится примерно раз в сутки. Возможный намек на то, как клетка «ощущает» свои размеры, содержится в том факте, что величина эукариотической клетки обычно пропорциональна ее плоидности: диплоидная клетка в два раза больше гаплоидной, а тетраплоидная в два раза больше диплоидной (см. рис. 13-40 и 13-41). Можно предположить, что решающую роль играет отношение клеточного объема к числу копий какого-то гена (или набора генов) или к общему количеству ДНК (а не отношение, скажем, объема клетки к ее поверхности). Например, некая растворимая молекула М (допустим, какая-то РНК) могла бы непрерывно синтезироваться ДНК-зависимым способом; если М нестабильна с постоянным периодом полужизни, то общее количество М в каждой клетке будет постоянным и будет находиться в определенном соотношении с количеством ДНК. По мере увеличения объема клетки концентрация М будет снижаться; падение концентрации ниже некоторого критического уровня могло бы быть сигналом к прохождению точки старта.

Каков бы ни был этот механизм, прохождение через точку старта должно соответствовать скачку в состоянии какого-то молекулярного переключателя. Четыре гена cdc у почкующихся дрожжей и два гена у делящихся дрожжей действуют в точке старта или около нее, и они, возможно, кодируют компоненты такого регуляторного механизма. Клетки с термочувствительными мутациями этих генов не смогут вступить в хромосомный цикл и вырастут ненормально крупными, если повысить температуру до рестриктивного уровня, пока они еще не достигли критических размеров, чтобы пройти точку старта. Ниже мы расскажем подробнее об одном из старт-контролирующих генов (cdc28) у почкующихся дрожжей и соответствующем ему гене (cdc2) у делящихся дрожжей. Эти два гена примечательны одной своей дополнительной функцией, особенно выраженной у делящихся дрожжей: их продукты необходимы не только для прохождения точки старта, но и для второй контрольной точки цикла-начала митоза.

413

Далее мы увидим, что у клеток высших эукариот в фазе G1 имеется контрольная точка, аналогичная точке старта, хотя правила прохождения через эту точку сложнее, чем у дрожжей. При нарушении этих правил возникают раковые опухоли. По одной только этой причине гены, участвующие в механизме точки старта, представляют особый интерес.

13.2.5. Прохождение через точку старта зависит от протеинкиназы, родственной М-стимулирующему фактору

(MPF) [15]

Дрожжи с их быстрым размножением и простой одноклеточной организацией - привлекательный объект для генной инженерии, и их легко использовать для включения ДНК, добавляемой в питательную среду. В принципе это позволяет клонировать нормальную («дикого типа») форму любого из генов cdc. Как показано на рис. 13-21, интересующий нас клон может быть без труда выделен благодаря его способности избавлять соответствующего мутанта cdc от его аномалий.

Такой подход был использован для клонирования гена cdc28 почкующихся дрожжей и гена cdc2 делящихся дрожжей; при этом было обнаружено несколько удивительных соответствий между этими двумя типами дрожжей и между дрожжами и позвоночными в отношении контроля точки старта и митоза. Гены cdc2 и cdc28 у дрожжей гомологичны и по последовательности нуклеотидов, и по функции: у делящихся дрожжей с мутацией гена cdc2 функциональный дефект можно устранить путем введения гена cdc28 от почкующихся дрожжей. Более того, у тех же мутантов по cdc2 сходного результата можно достичь, вводя им клонированный фрагмент ДНК человека, в которой, оказывается, тоже имеется последовательность, гомологичная cdc2/28. По-видимому, этот компонент механизма, управляющего клеточным циклом, является общим для дрожжей, млекопитающих и, вероятно, всех других эукариот.

Имея клонированный ген cdc2/28, сравнительно легко выделить белок, кодируемый этим геном. Он представляет собой протеинкиназу и, судя по всему спектру структурных и функциональных критериев, видимо, является дрожжевым гомологом киназной субъединицы MPF позвоночных. Кроме того, клонирование гена показало, что другой ген cdc делящихся дрожжей-cdc 13, продукт которого взаимодействует с продуктом гена cdc2, в высокой степени гомологичен гену циклина (разд. 13.1.11). Эти данные показывают, что MPF и циклин, вероятно, имеют универсальное значение в клеточном цикле эукариот; а двойственная роль cdc2/28 у дрожжей - в начале М-фазы и в точке старта - позволяет предположить, что у позвоночных соответствующая субъединица MPF или близкая к ней молекула тоже может каким-то образом участвовать в контроле инициации цикла деления во время фазы G1.

Рис. 13-21. Метод выделения генов cdc из библиотеки ДНК. Клон редкой ДНК, содержащей нормальную копию дикого типа определенного гена cdc, легко отобрать, так как содержащая его плазмида делает соответствующую мутантную клетку неспособной расти при высокой температуре. И ген cdc2 делящихся дрожжей, и ген cdc28 почкующихся дрожжей первоначально были выделены таким способом. Повторяя эту процедуру с клонами кДНК из библиотеки ДНК человека в подходящей плазмиде, удалось выделить гены человека, способные

заменять некоторые гены cdc дрожжей.

414

В самом деле, исследования на делящихся дрожжах показывают, что изменения в состоянии фосфорилирования этой регуляторной молекулы могут быть тем механизмом, с помощью которого клетки координируют свою готовность к началу цикла деления с условиями среды.

Заключение

Дрожжи - одноклеточные эукариотические организмы, очень подходящие для генетического анализа. И у почкующихся, и у делящихся дрожжей было идентифицировано множество мутаций, затрагивающих цикл клеточного деления (cdc), и клонированы соответствующие гены дикого типа. У дрожжевых и многих других эукариотических клеток, несмотря на изменчивые условия питания, поддерживаются стандартные размеры клетки с помощью механизма, который препятствует прохождению клетками критической точки (называемой точкой старта) и запускает цикл деления, когда они достигают пороговых размеров. У дрожжей некоторые из ключевых генов cdc, участвующих в этом контроле, были идентифицированы и их нуклеотидные последовательности определены. Один из них (обозначаемый cdc2 у делящихся дрожжей и cdc28-y почкующихся дрожжей) кодирует протеинкиназу, гомологичную MPF; другой ген (cdc!3) кодирует дрожжевой гомолог циклина.

13.3. Регуляция клеточного деления у многоклеточных организмов

У одноклеточных организмов, таких как дрожжи, бактерии или простейшие, отбор благоприятствует тому, чтобы каждая отдельная клетка росла и делилась как можно быстрее. Поэтому скорость деления клеток обычно лимитируется только скоростью поглощения питательных веществ из окружающей среды и переработки их в вещество самой клетки. В отличие от этого у многоклеточного животного клетки специализированы и образуют сложное сообщество, так что главная задача здесь - выживание организма, а не выживание или размножение отдельных его клеток. Для того чтобы многоклеточный организм выжил, некоторые его клетки должны воздержаться от деления, даже если нет недостатка в питательных веществах. Но когда возникает надобность в новых клетках, например при репарации повреждения, ранее не делившиеся клетки должны быстро переключаться на цикл деления; а в случаях непрерывного «износа» ткани скорости новообразования и отмирания клеток всегда должны быть сбалансированы. Поэтому здесь должны существовать сложные регуляторные механизмы более высокого уровня, чем тот, который действует у таких простых организмов, как дрожжи. Этот раздел и посвящен такому «социальному контролю» на уровне отдельной клетки. В гл. 17 и 21 мы познакомимся с тем, как он функционирует в многоклеточной системе для поддержания и обновления тканей тела и какие его нарушения происходят при раке, а в гл. 16 увидим, как еще более сложная система управляет клеточным делением в процессах индивидуального развития.

13.3.1. Различия в частоте деления клеток обусловлены разной длительностью паузы после митоза [16]

Клетки человеческого тела, число которых достигает 1013, делятся с весьма разными скоростями. Нейроны или клетки скелетной мышцы не делятся совсем; другие, например клетки печени, обычно делятся только раз в один или два года, а некоторые эпителиальные клетки кишечника,

415

Рис. 13-22. Деление и миграция клеток в эпителиальной выстилке тонкой кишки мыши. Все клеточные деления происходят только в нижней части трубчатых впячиваний эпителия, называемых криптами. Новообразованные клетки перемешаются вверх и образуют эпителий кишечных ворсинок, где они осуществляют переваривание и всасывание питательных веществ из просвета кишки. Большая часть эпителиальных клеток имеет короткий период жизни и слущивается с кончика ворсинки не позднее чем через пять дней после выхода из крипты. Однако кольцо примерно нз 20 медленно делящихся «бессмертных» клеток (их ядра выделены более темным цветом) остаются связанными с основанием крипты.

Эти так называемые стволовые клетки дают при делении две дочерние клетки: в среднем одна из них остается на месте и далее снова функционирует как недифференцированная стволовая клетка, а другая мигрирует наверх, где дифференцируется и входит в состав эпителия ворсинки. (С изменениями из С. S. Pptten, R. Schofield, L G. Lajtha, Biochim. Biophys. Acta 560: 281-299, 1979.)

чтобы обеспечить постоянное обновление внутренней выстилки кишки, делятся чаще чем два раза в сутки (рис. 13-22). Большинство клеток позвоночных располагается где-то в этих временных пределах: они могут делиться, но обычно делают это не так часто. Почти все различия в частоте деления клеток обусловлены разницей в длине промежутка между митозом и S-фазой; медленно делящиеся клетки останавливаются после митоза на недели и даже годы. Наоборот, время, за которое клетка проходит ряд стадий от начала S-фазы до окончания митоза, очень коротко (у млекопитающих обычно от 12 до 24 ч) и удивительно постоянно, каким бы ни был интервал между последовательными делениями.

Время нахождения клеток в непролиферирующем состоянии (так называемой фазе G0) меняется в зависимости не только от их типа, но и от обстоятельств. Половые гормоны побуждают клетки в стенке матки быстро делиться на протяжении нескольких дней в каждом менструальном цикле, чтобы замещать ткань, утраченную при менструации; потеря крови стимулирует пролиферацию предшественников кровяных клеток; повреждение печени заставляет выжившие клетки этого органа делиться раз или два в сутки, пока не будет возмещена потеря. Точно так же эпителиальные клетки, окружающие рану, приступают к усиленному делению для восстановления поврежденного эпителия (рис. 13-23).

Для регулирования пролиферации клеток каждого типа в соответствии с потребностью существуют тщательно отлаженные и высокоспецифичные механизмы. Однако, хотя важность такой регуляции

416

Рис. 13-23. Пролиферация клеток эпителия в ответ на ранение. Эпителий хрусталика повреждали с помощью иглы и спустя определенное время добавляли 3Н-тимидин для мечения клеток в фазе S (выделены цветом); затем вновь фиксировали и приготовляли препараты для

рідиоавтографии. На схемах слева участки с клетками в фазе S выделены цветом, а с клетками в фазе М - отмечены крестиками; черное пятно в центре - место нанесения раны. Стимуляция клеточного деления постепенно распространяется от раны, вовлекая в деление покоящиеся клетки в фазе G0, я это приводит к необычно сильной реакции на относительно малое повреждение. На 40-часовом препарате клетки, далеко отстоящие от раны, вступают в фазу S первого цикла деления, тогда как клетки около самой раны вступают в S-фазу второго цикла деления. Рисунок справа соответствует участку, заключенному на схеме слева в прямоугольник; он сделан по фотографии 36-часового препарата, окрашенного для выявления клеточных ядер. (По С. Harding, J. R. Reddan, N.J. Unakar, M. Bagchi, Int. Rev. Cytol. 31: 215-300, 1971.)

очевидна, ее механизмы трудно анализировать в сложном контексте целого организма. Поэтому детальное изучение регуляции клеточного деления обычно проводят на культуре клеток, где легко изменять внешние условия и длительное время наблюдать за клетками.

13.3.2. Когда условия для роста становятся неблагоприятными, клетки животных, так же как и дрожжевые клетки, останавливаются в критической точке в G1 - вточке рестрикции [17]

При изучении клеточного цикла in vitro в большинстве случаев используются стабильные клеточные линии (разд. 4.3.4), способные размножаться неопределенно долго. Это линии, специально отобранные для поддержания в культуре; многие из них - так называемые нетрансформированные клеточные линии - широко используются в качестве моделей пролиферации нормальных соматических клеток.

Фибробласты (такие, как различные типы мышиных клеток ЗТЗ) обычно делятся быстрее, если расположить их в культуральной чашке не слишком плотно и использовать культуральную среду, богатую питательными веществами и содержащую сыворотку - жидкость, получаемую при свертывании крови и очищенную от нерастворимых сгустков и кровяных клеток. При нехватке каких-либо важных питательных веществ, например аминокислот, или при добавлении в среду ингибитора белкового синтеза клетки начинают вести себя примерно так же, как описанные выше дрожжевые клетки при недостатке питания: средняя продолжительность фазы Gt возрастает, но на остальной части клеточного цикла все это почти не сказывается. Как только клетка прошла через G1, она уже неизбежно и без задержки проходит фазы S, G2 и М независимо от условий среды. Эту точку перехода в поздней фазе G1 часто называют точкой рестрикции (R), потому что именно здесь клеточный цикл еще может приостановиться, если внешние условия препятствуют его продолжению. Точка рестрикции соответствует точке старта в клеточном цикле дрожжей; так же как и у дрожжей, она может отчасти служить механизмом, регулирующим размеры клетки. Однако у высших эукариот ее функция более сложна, чем у дрожжей, и в фазе G1 может быть несколько слегка различающихся точек рестрикции, связанных с различными механизмами контроля клеточной пролиферации.

417

Рис. 13-24. Разброс величин длительности клеточного цикла, наблюдаемый обычно в гомогенной популяции клеток in vitro. Такие данные получают, наблюдая отдельные клетки под микроскопом и прямо отмечая время между последовательными делениями.

13.3.3. Длительность цикла пролиферирующих клеток, по-видимому, имеет вероятностный характер [18]

Индивидуальные клетки, делящиеся в культуре, можно непрерывно наблюдать с помощью цейтраферной киносъемки. Такие наблюдения показывают, что даже у генетически идентичных клеток длительность цикла весьма изменчива (рис. 13-24). Количественный анализ показывает, что время от одного деления до следующего содержит случайно меняющуюся компоненту, причем изменяется она главным образом за счет фазы G1. По-видимому, по мере того как клетки приближаются к точке рестрикции в GJ (рис. 13-25), они должны некоторое время «выждать», прежде чем перейти к оставшейся части цикла, причем для всех клеток вероятность в единицу времени пройти точку R примерно одинакова. Таким образом, клетки ведут себя подобно атомам при радиоактивном распаде; если в первые три часа через точку R прошла половина клеток, в следующие три часа через нее пройдет половина оставшихся клеток, еще через три часа - половина тех, что останутся, и т. д. Возможный механизм, объясняющий такое поведение, был предложен ранее, когда речь шла об образовании активатора S-фазы (разд. 13.1.5). Однако случайные изменения длительности клеточного цикла означают, что первоначально синхронная клеточная популяция через несколько циклов утратит свою синхронность. Это неудобно для исследователей, но может быть выгодно для многоклеточного организма: в противном случае большие клоны клеток могли бы проходить митоз одновременно, а поскольку клетки во время митоза обычно округляются и утрачивают прочную связь друг с другом, это серьезно нарушало бы целостность ткани, состоящей из таких клеток.

13-15

13-16

13.3.4. Для пролиферации клеток разного типа требуются разные факторы роста [19, 20]

Условия, при которых клетка будет расти и делиться, для животной клетки значительно сложнее, чем для дрожжевой. Если клетки позвоночных в стандартной искусственной культуральной среде полностью лишить кровяной сыворотки, то они в большинстве случаев не смогут проходить точку рестрикции, даже если в среде имеются все необходимые питательные вещества; при этом они перестанут также и расти. Анализы показывают, что незаменимыми компонентами сыворотки являются высокоспецифичные белки, присутствующие в очень малых концентрациях (порядка 10-9 - 10-11 М). Клеткам разного типа необходимы разные наборы таких белков. Некоторые из белков сыворотки прямо и специфически участвуют в стимуляции клеточного деления, и их называют факторами роста. Таков, например, тромбоцитарный фактор роста, или PDGF (plateled-derived growth factor). Способ его выделения был подсказан тем фактом, что культивируемые фибробласты делятся при наличии в среде сыворотки, но не делятся в присутствии плазмы-

Рис. 13-25. Эта схема показывает, что быстро делящиеся клетки млекопитающих в культуре задерживаются на какое-то время в поздней фазе G1 в точке, которая, возможно, соответствует точке рестрикции (R). Если белковый синтез блокирован, то они могут оставаться в этой точке неопределенно долгое время. Непрерывное наблюдение над клетками под микроскопом показывает, что генетически идентичные клетки, в том числе и две дочерние клетки - продукты одного деления - часто задерживаются на разное время перед прохождением точки R. Это позволяет

думать, что задержка обусловлена каким-то случайным процессом (см. текст).

418

Рис. 13-26. Предполагаемая роль тромбоцитарного фактора роста (PDGF) в заживлении ран. PDGF секретируется в поврежденном участке кровяными пластинками и макрофагами, а также, возможно, эндотелиальными и гладкомышечными клетками пораненных кровеносных сосудов. Он вызывает пролиферацию фибробластов и клеток гладкой мускулатуры, стимулирует фибробласты к дополнительной выработке внеклеточного матрикса и хемотаксически привлекает фибробласты и макрофаги. Заживление - сложный процесс, в котором наряду с PDGF

участвуют и многие другие факторы.

жидкого компонента крови, который получают, удаляя кровяные клетки, но не позволяя крови свертываться. При свертывании крови тромбоциты (разд. 17.5) начинают высвобождать содержимое своих секреторных пузырьков, и среди высвобождаемых веществ (наряду с факторами, вызывающими свертывание) оказывается PDGF. В основном именно он делает возможным деление фибробластов в культуре. По-видимому, PDGF обладает таким же действием и в организме, где он стимулирует клетки соединительной ткани и гладкой мускулатуры к делению при заживлении ран (рис. 13-26). Клетки, реагирующие на PDGF, имеют на своей плазматической мембране специальные рецепторы для него (и для некоторых других факторов роста). У клеток иных типов имеются другие наборы рецепторов, взаимодействующие с другими факторами роста (табл. 13-1); некоторые из этих факторов тоже содержатся в сыворотке.

Поскольку факторы роста секретируются в малых количествах, их трудно выделять. Эта трудность усугубляется сложностью их действия, так как большинство типов клеток, видимо, реагирует на специфическую комбинацию факторов роста, а не на какой-то один специфический фактор. Хотя до сих пор было охарактеризовано сравнительно немного различных факторов роста (меньше 30), многие из них повторно находили в других условиях и давали им другие названия - только позднее выяснялось, что это были уже известные молекулы. Из этого, возможно, следует, что имеется лишь небольшое число факторов роста, которые, действуя в разных комбинациях, избирательно регулируют пролиферацию каждого из многочисленных типов клеток высших животных; и становится ясно, что те же самые факторы действуют в определенных условиях как регуляторы других процессов, в особенности процессов клеточной дифференцировки. Некоторые факторы роста циркулируют в крови, но большинство действует как локальные химические медиаторы. Класс локальных химических медиаторов, возможно, включает и большое число еще плохо изученных факторов, помогающих регулировать деление и дифференцировку клеток в процесе развития организма (разд. 16.2.3). В дополнение к факторам роста, стимулирующим клеточное деление, есть и противоположно действующие факторы, которые его тормозят, хотя по большей части они охарактеризованы менее полно.

419

Таблица 13.1. Некоторые факторы роста и их действие

Фактор

 

 

 

Состав

Типичные эффекты

Тромбоцитарный фактор роста (PDGF)

АА, АВ или ВВ

Стимулирует деление соединительнотканных клеток (разд.

 

 

 

 

Цепь А 125 аминокислот

13.3.4) и клеток нейроглии (разд. 16.3.7)

 

 

 

 

Цепь В- 160 аминокислот

 

Фактор роста эпидермиса (ФРЭ, EGF)

53 аминокислоты

Стимулирует деление клеток многих типов (разд. 12.3.13)

Инсулиноподобные факторы роста I и II

70 и 73 аминокислоты соответственно

Действует совместно с PDGF и ФРЭ, стимулируют деление

(IGF-I и IGF-II)

 

 

 

жировых и соединительнотканных клеток

Трансформирующий

фактор

роста Р Две цепи по 112 аминокислот в каждой Усиливает или подавляет (в зависимости от типа клетки)

(TGF-P)

 

 

 

 

реакцию большинства клеток на другие ростовые факторы,

 

 

 

 

 

регулирует дифференциров-ку некоторых клеток (разд. 16.2.3

 

 

 

 

 

и 17.7.1)

Фактор роста фибробластов (ФРФ, FGF)

У кислого ФРФ 140 аминокислот,

у Стимулирует деление клеток многих типов, включая

 

 

 

 

основного146

фибробласты, эндотелиальные клетки (разд. 17.3.7) и

 

 

 

 

 

миобласты (разд. 17.6.1), индуцирует образование мезодермы

 

 

 

 

 

у эмбриона Xenopus (разд. 16.2.3)

Интерлейкин-2

 

 

153 аминокислоты

Стимулирует пролиферацию Т-лимфоцитов (разд. 18.6.11)

(IL-2)

 

 

 

 

 

Фактор роста нервов (ФРН, NEG)

Две цепи по 1 1 8 аминокислот

в Способствует росту аксонов и выживанию симпатических

 

 

 

 

каждой

нейронов и некоторых сенсорных и центральных нейронов

 

 

 

 

 

(разд. 19.7.10)

Факторы

роста

клеток

системы

См. табл. 17-2 в разд. 17.5.8

 

кроветворения (IL-3; GM-CSF, M-CSF; G-

 

 

CSF, эритропоэтин)

 

 

 

 

13.3.5. Соседние клетки конкурируют за факторы роста [20, 21]

С помощью таких факторов роста, как PDGF, клетки одного типа могут контролировать пролиферацию клеток другого типа. Но важно и то, что клетки одного и того же типа в ткани взаимодействуют друг с другом и согласовывают скорость деления, чтобы поддерживать надлежащую плотность популяции. «Социальный» контроль такого рода четко проявляется при реакциях на повреждение. Например, когда поврежден эпителий, клетки по краям раны стимулируются к делению (см. рис. 13-23) и наползанию на обнаженную поверхность до тех пор, пока она вновь не будет закрыта; в этот момент быстрая пролиферация и движение клеток прекращаются. Сходное явление можно наблюдать на диссоциированных клетках в культуре. Эпителиальные клетки или фибробласты, помещенные в чашку, в присутствии сыворотки будут «приклеиваться» к поверхности, распластываться и делиться до тех пор, пока не образуется сплошной монослой, в котором соседние клетки соприкасаются. После этого нормальные клетки перестают делиться-явление, известное как торможение пролиферации, зависимое от плотности. Если такой монослой «поранить» иглой таким образом, чтобы на

420

Рис. 13-27. Клетки, разбросанные по поверхности культуральной чашки, нормально пролиферируют до тех пор, пока не сольются в непрерывный монослой. На рисунке показана последовательность событий после соскабливания полоски клеток. Клетки по краям «раны» распластываются и возобновляют рост и деление, продолжающиеся до заполнения разрыва между ними. Когда монослой вновь становится

непрерывным, клеточная пролиферация почти полностью прекращается.

чашке образовалась свободная от клеток полоска, клетки с краев этой полоски начинают продвигаться на свободное место и делиться (рис. 13-27). Вначале такие явления объясняли «контактным торможением» клеточного деления, но это, видимо, не отражает сути дела. Плотность клеточной популяции, при которой клетки в сплошном монослое перестают делиться, увеличивается с повышением концентрации факторов роста в среде. Кроме того, оказалось, что если культуральная жидкость будет протекать по поверхности чашки с островками клеток, то клетки, омываемые средой, только что прошедшей над другими клетками, будут делиться медленнее, чем те, которые омываются средой, прошедшей над свободными от клеток участками. Создается впечатление, что в среде, протекавшей над клетками, недостает каких-то важных питательных веществ или факторов роста. Кстати, это можно было бы предсказать. В самом деле, PDGF обычно присутствует в среде в концентрации около 10 -10 М (примерно одна молекула в объеме сферы диаметром 3 мкм). Один фибробласт имеет около 105 рецепторов PDGF, каждый из которых обладает очень высоким сродством к фактору роста. Таким образом, у каждой клетки достаточно рецепторов, чтобы связать все молекулы PDGF в объеме сферы диаметром около 150 мкм. Кроме того, полагают, что значительная часть PDGF, связанного рецепторами клеточной поверхности, быстро поглощается путем эндоцитоза и разрушается (разд. 6.5.12). Из этого ясно, что соседние клетки конкурируют между собой за малейшие количества факторов роста. Такого рода конкуренция была бы важна как для клеток в ткани, так и для культивируемых клеток, - она предотвращала бы рост

популяции выше некоторого уровня ее плотности.

13-14

13.3.6. Нормальные животные клетки в культуре перестают делиться при откреплении от субстрата [22]

Конкуренция за факторы роста и питательные вещества - не единственный фактор, влияющий на скорость деления в клеточной культуре. Форма клеток во время их распластывания и движения по поверхности субстрата на свободные места тоже сильно влияет на их способность делиться. При культивировании нормальных клеток в суспензии, когда они не прикреплены к твердой поверхности и поэтому имеют округлую форму, они почти никогда не делятся (зависимость деления от прикрепления). Влияние распластывания клеток на пролиферацию можно продемонстрировать при выращивании клеток на субстратах с различной адгезивностью поверхности или на таких субстратах, где имеются лишь крошечные адгезивные участки, на которых клетка может прикрепиться, но не может распластаться. Частота деления клеток возрастает с увеличением степени их распластывания. Возможно, что сильно распластанные клетки могут улавливать больше молекул фактора роста и поглощать больше питательных веществ благодаря своей большей поверхности. Однако некоторые типы клеток (например, клетки ЗТЗ), почти не способные к пролиферации в суспензии, охотно делятся, как только им удается вступить в контакт с участком субстрата, даже если этот участок настолько мал, что клетка не может на нем распластаться (рис. 13-28). Такие «фокальные» контакты являются местами соединения (хотя и непрямого) внутриклеточных актиновых филаментов с молекулами внеклеточного матрикса (разд. 11.2.8). Эти и другие наблюдения определенно наводят на мысль, что контроль клеточного деления каким-то образом связан с организацией цито-

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]