Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v2

.pdf
Скачиваний:
28
Добавлен:
10.02.2015
Размер:
34.36 Mб
Скачать

471

Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell, 45, 329-342, 1986.

Kuriyama R., Borisy G. G. Microtubule-nucleating activity of centrosomes in Chinese hamster ovary cells is independent of the centriole cycle but coupled to the mitotic cycle. J. Cell Biol., 91, 822 826, 1981.

Saxton W. M. et al. Tubulin dynamics in cultured mammalian cells. J. Cell Biol., 99, 2175-2186, 1984. 37. Clarke L., Carbon J. The structure and function of yeast centromeres. Annu. Rev. Genet., 19, 29-56, 1985.

Earnsham W. C. et al. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol., 104, 817-829, 1987. Mitchison T.J., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell, 45, 515-527, 1986.

Peterson J. В., Ris H. Electron microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J. Cell Sci., 22, 219-242, 1976.

Rieder C. L. The formation, structure and composition of the mammalian kinetochore fiber. Int. Rev. Cytol., 79, 1-58, 1982. 38. Euteneuer U., Mclntosh J. R. Structural polarity of kinetochore microtubules in PtKj cells. J. Cell Biol., 89, 338-345, 1981.

Mitchison T.J., Kirschner M. W. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J. Cell Biol., 101, 766-777, 1985.

Rieder С. L., Davison E. A., Jensen C.W., Cassimeris L., Salmon E. D. Oscillatory monooriented movements of chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol., 103, 581 591, 1986.

Roos U.-P. Light and electron microscopy of rat kangaroo cells in mitosis. III. Patterns of chromosome behavior during prometaphase. Chromosoma, 54, 363-385, 1976.

39. Begg D.A., EllisG.W. Micromanipulation studies of chromosome movement. J. Cell Biol., 82, 528-541, 1979.

Nicklas R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem., 17, 431-450, 1988.

Nicklas R. В., Kubai D. F. Microtubules, chromosome movement, and reorientation after chromosomes are detached from the spindle by micromanipulation. Chromosoma, 92, 313-324, 1985.

40.Hays T.S., Wise D., Salmon E.D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J. Cell Biol., 93, 374-382, 1982.

McNeill P. A., Berns M. W. Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells. J. Cell Biol., 88, 543-553, 1981.

Ostergren G. The mechanism of coordination in bivalents and multivalents. The theory of orientation by pulling. Hereditas, 37, 85-156, 1951.

41.Hepler P. K., Callaham D. A. Free calcium increases during anaphase in stamen hair cells of Tradescantia. J. Cell Biol., 105, 2137-2143, 1987. Murray A. W., Szostak J. W. Chromosome segregation in mitosis and meiosis. Annu. Rev. Cell Biol., 1, 289-315, 1985.

Wolniak S. M. The regulation of mitotic spindle function. Biochem. Cell Biol., 66, 490-514, 1988.

42.Ris H. The anaphase movement of chromosomes in the spermatocytes of grasshoppers. Biol. Bull. (Woods Hole), 96, 90-106, 1949.

43.Gorbsky G. J., Sammak P. J., Borisy G. G. Microtubule dynamics and chromosome motion visualized in living anaphase cells. J. Cell Biol., 106, 1185-1192, 1988.

Mitchison T.J. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol., 4, 527 549, 1988. Nicklas R. B. Measurements of the force produced by the mitotic spindle in anaphase. J. Cell Biol., 97, 542-548, 1983.

Spurck T. P., Pickett-Heaps J. D. On the mechanism of anaphase A: Evidence that ATP is needed for microtubule disassembly and not generation of polewards force. J. Cell Biol., 105, 1691-1705, 1987.

44.Aist J. R., Berns M. W. Mechanics of chromosome separation during mitosis in Fusarium (Fungi imperfecti): new evidence from ultrastructural and laser micro-beam experiments. J. Cell Biol., 91, 446-458, 1981.

Masuda H., Cande W. Z. The role of tubulin polymerization during spindle elongation in vitro. Cell, 39, 193-202, 1987. Pickett-Heaps J. D. Mitotic mechanisms: an alternative view. Trends Biochem. Sci., 11, 504-507, 1986.

45.Gerace L., Blobel G. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell, 19, 277 287, 1980.

Gerace L., Burke B. Functional organization of the nuclear envelope. Annu. Rev. Cell Biol., 4, 335-374, 1988.

472

SwansonJ.A,, McNeil P.L. Nuclear reassembly excludes large macromolecules. Science, 238, 548-550, 1987.

46.Kirschner M. W., Newport J., Gerhart J, The timing of early developmental events in Xenopus. Trends Genet., 1, 41-47, 1985.

47.Rappaport R. Establishment of the mechanism of cytokinesis in animal cells. Int. Rev. Cytol., 105, 245-281, 1986.

Tolle H. G., Weber K., Osborn M. Keratin filament disruption in interphase and mitotic cells-how is it induced? Eur. J. Cell Biol., 43, 35-47, 1987.

White J. G., Borisy G. G. On the mechanism of cytokinesis in animal cells. J. Theor. Biol., 101, 289-316, 1983.

48.DeLozanne A., Spudich J. A. Disruption of the dictyostelium myosin heavy chain gene by homologous recombination. Science, 236, 1086-1091, 1987.

Knecht D.A., Loomis W.F. Antisense RNA inactivation of myosin heavy chain gene depression in Dictyostelium discoideum. Science, 236, 1081-1086, 1987.

Mabuchi I., Okuno M. The effect of myosin antibody on the division of starfish blastomeres. J. Cell Biol., 74, 251-263, 1977.

Schroeder Т. Е. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc. Natl. Acad. Sci. USA, 70, 1688 1692, 1973.

49.Gunning B. E, S., Wick S. M. Preprophase bands, phragmoplasts and spatial control of cytokinesis. J. Cell Sci. Suppl. 2, 157-179, 1985. Huffaker T.C., Hoyt M.A., Botstein D. Genetic analysis of the yeast cytoskeleton. Annu. Rev. Genet., 21, 259-284, 1987.

Lloyd C. W. The plant cytoskeleton: the impact of fluorescence microscopy. Annu. Rev. Plant Physiol., 38, 119-139, 1987.

Pickett-Heaps J. D., Northcote D. H. Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J. Cell Sci., 1, 109-120, 1966.

50.Lucocq J. M., Warren G. Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J., 6, 3239-3246, 1987.

51.Hill D.P., Strome S. An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans. Dev. Biol., 125, 75 84, 1988.

Kenyan C. Cell lineage and the control of Caenorhabditis elegans development. Phil. Trans. R. Soc. Lond. (Biol.), 312, 21-38, 1985.

52.Donachie W.D., Robinson A.C. Cell division: parameter values and the process in Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology (F.C. Neidhardt, et al., eds.), pp. 1578-1593. Washington, DC, American Society for Microbiology, 1987.

Heath I. B. Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int. Rev. Cytol., 64, 1-80, 1980. Kubai D.F. The evolution of the mitotic spindle. Int. Rev. Cytol., 43, 167-227, 1975.

Wise D. The diversity of mitosis: the value of evolutionary experiments. Biochem. Cell Biol., 66, 515-529, 1988.

473

14 Клеточная адгезия, соединения между клетками и внеклеточный матрикс

Большинство клеток у многоклеточных животных кооперируется в организованные ансамбли, называемые тканями, которые в свою очередь в различных комбинациях объединяются в более крупные функциональные единицы - органы (рис. 14-1). Клетки в тканях, как правило, контактируют со сложной сетью макромолекул, образующих внеклеточный матрикс. Этот матрикс способствует поддержанию многоклеточных структур и создает упорядоченный каркас, внутри которого клетки могут мигрировать и взаимодействовать друг с другом. В некоторых случаях клетки прикрепляются к матриксу в специализированных участках плазматической мембраны; непосредственно контактирующие соседние клетки нередко бывают связаны между собой с помощью особых межклеточных соединений.

Полезно разделить животные ткани на две главные группы, в которых роль матрикса и межклеточных соединений существенно различна. В соединительных тканях (разд. 14.2) имеется обширный внеклеточный матрикс, в котором клетки располагаются весьма свободно (рис. 14-1). Матрикс богат волокнистыми полимерами, особенно коллагеном, и поэтому именно он, а не клетки, берет на себя большую часть нагрузок, которым подвергается ткань. Клетки прикреплены к компонентам матрикса, которым они могут передавать механические усилия, в то время как соединения между отдельными клетками относительно несущественны. Напротив, в эпителиальных тканях клетки плотно прилегают друг к другу, образуя пласты (называемые эпителиями); внеклеточного матрикса мало, и основной объем ткани занимают клетки. Здесь уже сами клетки, а не матрикс воспринимают большую часть нагрузок через посредство прочных внутриклеточных белковых волокон (компонентов цитоскелета), пересекающих в разных направлениях цитоплазму каждой эпителиальной клетки; эти волокна прикрепляются к внутренней поверхности плазматической мембраны, и в этих местах образуются специализированные соединения с поверхностью другой клетки или с подлежащим внеклеточным матриксом.

Рис. 14-1. Как видно из этого схематического поперечного разреза, кишечная стенка состоит из эпителиальной, соединительной и мышечной тканей. Каждая ткань представляет собой организованную систему клеток, объединенную межклеточными соединениями и (или)

внеклеточным матриксом.

474

Каковы пространственные отношения эпителиальных и соединительных тканей в организме? Эпителиальные клеточные пласты выстилают все полости и свободные поверхности тела, и благодаря специализированным соединениям между клетками эти пласты могут служить барьерами для передвижения воды, растворов и клеток из одного компартмента организма в другой. Как показано на рис. 14-1, эпителии почти всегда располагаются на подложке из соединительной ткани, которая может связывать их с другими тканями (например, мышечной), не имеющими явно выраженной эпителиальной или соединительнотканной организации.

В этой главе мы сначала познакомимся со структурой и организацией соединений между клетками и матриксом, а затем рассмотрим, как клетки узнают друг друга в процессе объединения в ткани и органы.

14-8

14.1. Межклеточные соединения [1]

Специализированные межклеточные соединения особенно многочисленны и важны в эпителиях, но во многих местах контакта между клетками и между клетками и матриксом они встречаются во всех тканях. В большинстве своем они слишком малы для того, чтобы их можно было увидеть в световой микроскоп; однако их можно выявить с помощью электронной микроскопии в обычных препаратах или же в препаратах, полученных методом замораживания-скалывания. В обоих случаях видно, что взаимодействующие плазматические мембраны (а нередко и подстилающие их участки цитоплазмы и межклеточное пространство) имеют в этих местах высокоспециализированную структуру. Клеточные соединения могут быть разделены на три функциональные группы: 1) запирающие соединения, которые так тесно сцепляют клетки в эпителиальном пласте, что делают невозможным прохождение даже небольших молекул с одной стороны пласта на другую; 2) прикрепительные контакты, которые механически связывают клетки (и их цитоскелеты) с соседними клетками или внеклеточным матриксом; и 3) коммуникационные контакты, по которым передаются химические или электрические сигналы между взаимодействующими клетками.

Основные типы межклеточных соединений внутри каждой из этих групп перечислены в табл. 14-1. Основным типом замыкающих контактов являются плотные соединения; адгезионные соединения и десмосомы составляют основной тип прикрепительных контактов; а щелевые кон-

Таблица 14-1. Функциональная классификация клеточных соединений

__________________________________________________________________

I. Замыкающие (плотные) соединения II. Прикрепительные соединения

1.Места прикрепления актиновых филаментов (адгезионные контакты) а) между клетками (например, адгезионные пояса)

б) между клетками и матриксом (например, фокальные контакты)

2.Места прикрепления промежуточных филаментов

а) между клетками (десмосомы)

б) между клетками и матриксом (полудесмосомы)

III.Коммуникационные соединения

1.Щелевые контакты

2.Химические синапсы

3.Плазмодесмы (только у растений)1)

___________

1) Это единственный род соединений между растительными клетками.

__________________________________________________________________

475

такты, химические синапсы нервных клеток и, наконец, плазмоде с мы, образующиеся между растительными клетками, - это главные виды коммуникационных контактов. Так как химические синапсы и плазмодесми будут детально рассматриваться в гл. 19 и 20 соответственно, мы не будем обсуждать их в этой главе.

14-4

14-5

14.1.1. Плотные соединения создают в эпителиальных клеточных пластах барьер проницаемости [2]

Несмотря на существенные структурные и биохимические различия между разными типами эпителиев, эти ткани обладают по меньшей мере одной общей функцией: они служат барьерами с избирательной проницаемостью, разделяющими жидкости разного химического состава по обе стороны пласта. Плотные соединения играют вдвойне важную роль в поддержании такой барьерной функции. Это хорошо иллюстрируется на примере кишечного эпителия млекопитающих.

Эпителиальные клетки, выстилающие тонкий кишечник, удерживают большую часть содержимого кишки в ее внутренней полости (просвете). Однако в то же время они должны перекачивать определенные питательные вещества через клеточный пласт во внеклеточную жидкость соединительной ткани по другую сторону пласта (см. рис. 14-1), откуда эти вещества диффундируют в кровеносные сосуды. Такой трансэпителиальный перенос осуществляют две группы транспортных белков, связанных с мембраной. Одна группа расположена на апикальной поверх-

Рис. 14-2. Схема эпителиальной клетки из тонкой кишки: показано, как плотные контакты разграничивают области плазматической мембраны, в которых могут находиться различные транспортные белки. Такое разграничение обеспечивает перенос питательных веществ из просвета кишки через эпителиальный слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозними насосами апикальной поверхности, а затем выходит из клетки путем облегченной диффузии при участии белков - пассивных переносчиков

глюкозы, находящихся в базолатеральной области мембраны. Плотные соединения, по-видимому, ограничивают перемещение белков определенными участками плазматической мембраны, действуя как диффузионные барьеры внутри ее липидного бислоя; эти соединения блокируют также диффузию липидных молекул в наружном (но не во внутренном) листке липидного бислоя.

476

Рис. 14-3. Растворимая меченая молекула, введенная по одну сторону эпителиального слоя, не может пройти через плотные соединения, скрепляющие соседние клетки. Но это препятствие не абсолютно, и есть данные о том, что клетки могут изменять свойства своих плотных

соединений для регулирования потока растворенных веществ и воды через эпителий.

ности (обращенной в просвет кишки) и активно переносит избранные молекулы из просвета в эпителиальные клетки; другая группа расположена на базолатеральных (базальных и латеральных) поверхностях клеток и позволяет тем же молекулам выходить из клеток, облегчая диффузию во внеклеточную жидкость по другую сторону эпителия (рис. 14-2). Для поддержания такого направленного транспорта нужно, чтобы апикальные транспортные белки не могли переходить на базолатеральную поверхность клетки, а базолатеральные - на апикальную поверхность. Кроме того, щели между эпителиальными клетками должны быть так закупорены, чтобы транспортируемые молекулы не могли диффундировать обратно в полость кишки через межклеточные пространства «вниз» по градиентам концентрации, создающимся в результате трансэпителиального переноса.

По-видимому, плотные соединения между эпителиальными клетками препятствуют обоим этим видам диффузии. Во-первых, они действуют как барьеры для диффузии мембранных белков между апикальной и базолатеральной поверхностями плазматической мембраны (рис. 14-2). Такая нежелательная диффузия компонентов мембраны происходит при разрушении плотных соединений, например при удалении внеклеточных ионов Са2 + , необходимых для сохранения целостности плотного соединения. Во-вторых, соседние клетки оказываются так плотно сомкнутыми, что даже и водорастворимые молекулы не прохо-

Рис. 14-4. Структура плотного соединения между эпителиальными клетками тонкой кишки. А, Схема. Б. Электронная микрофотография препарата, полученного методом замораживания-скалывания. В. Обычная электронная микрофотография. Обратите внимание, что клетки ориентированы апикальными концами вниз. На фото Б плоскость микрофотографии параллельна плоскости мембраны; видно, что плотное

соединение образовано сетью из герметизирующих цепочек, опоясывающей каждую клетку в пласте. Эти герметизирующие цепочки видны как гребни из внутримембранных частиц на внутренней (цитоплазматической) поверхности скола (В) или как комплементарные им бороздки на наружной поверхности мембраны (Н). На обычном препарате (В) соединение выглядит как серия фокальных контактов между наружными липидными слоями двух смежных мембран; каждый такой контакт соответствует герметизирующей цепочке в поперечном разрезе. [Б и В из N. В. Giluda. Tn: Cell Communication (R.P, Cox, ed.), pp. 1-29. New York, Wiley, 1974. Reprinted by permission of John Wiley a. Sons, Inc.]

477

Рис. 14-5. Современная модель строения плотного соединения. Предполагается, что смежные плазматические мембраны скреплены непрерывными цепочками из особых трансмембранных белков, осуществляющих контакт через межклеточное пространство и образующих герметичное соединение. Чтобы показать эти белковые цепочки, внутренний липидный монослой одной из мембран на этой схеме отогнут. На препаратах, приготовленных методом замораживания -скалывания, белки плотного соединения остаются не на наружном монослое мембраны, как

показано здесь, а на внутреннем, где создают узор внутримебранных частиц, показанный на рис. 14-4, Б.

дят между ними: если с одной сторони эпителиального клеточного пласта ввести электроноплотный маркер из малых молекул, то обычно он не проникает через плотное соединение (рис. 14-3).

Молекулярная структура плотного соединения еще не ясна, но электронная микроскопия с применением метода замораживания - скалывания показывает, что оно состоит из сети анастомозирующих волокон, которая оплетает апикальный конец каждой клетки по всей его окружности (рис. 14-4, А и Б). На обычных электронных микрофотографиях они видны как серии локальных соединений между наружными поверхностями двух смежных плазматических мембран (рис. 14-4, В). Хотя все плотные соединения непроницаемы для макромолекул, их проницаемость для малых молекул сильно различается у разных эпителиев. Например, в эпителии, выстилающем тонкий кишечник, плотные соединения в 10000 раз более проницаемы для ионов, чем в эпителии мочевого пузыря. Способность соединения препятствовать переходу ионов через межклеточные пространства увеличивается в логарифмической зависимости от числа волокон в сети, как если бы каждое волокно действовало как независимый барьер. Как полагают, волокна состоят из длинных рядов специфических трансмембранных белков каждой из двух контактирующих мембран, которые (белки) непосредственно соединяются друг с другом, замыкая межклеточное пространство (рис. 14-5).

14.1.2. Прикрепительные контакты связывают цитоскелет клетки с цитоскелетом соседней клетки или с внеклеточным матриксом

Прикрепительные контакты встречаются во многих тканях. Они позволяют группам клеток, например эпителиальных, функционировать в виде прочных структурных единиц, скрепляя цитоскелетные элементы разных клеток между собой или с внеклеточным матриксом (рис. 14-6). Их больше всего в тканях, подверженных большим механическим

Рис. 14-6. На этой схеме показано, как соединены филаменты цитоскелета с такими же филаментами соседних клеток и с внеклеточным матриксом.

478

Рис. 14-7. Схема функциональной роли двух групп белков, образующих прикрепительные контакты: внутриклеточных прикрепительных белков и трансмембранных линкерных гликопротеинов. В данном примере внеклеточные домены трансмембранных линкерных гликопротеинов, скрепляющих клетки, взаимодействуют непосредственно. В других случаях они могут быть соединены дополнительными белками, находящимися

во внеклеточном пространстве. Комплексы внутриклеточных прикрепительных белков связывают линкерные гликопротеины с цитоскелетом.

нагрузкам, таких как сердечная мышца, эпидермис или шейка матки. Они встречаются в двух структурно и функционально различных формах: 1) адгезионные соединения и 2) десмосомы и полудесмосомы. Адгезионные контакты служат местами соединения актиновых филаментов, а десмосомы и полудесмосомы - местами соединения промежуточных филаментов.

Прежде чем рассматривать различные классы прикрепительных контактов, следует вкратце охарактеризовать общие принципы их структуры. Как показано на рис. 14-7, все эти соединения состоят из белков двух типов: 1) внутриклеточных прикрепительных белков, которые связывают соединительный комплекс со специфическими элементами цитоскелета (актиновыми или промежуточными филаментами), и 2) трансмембранных линкерных гликопротеинов, внутриклеточные домены которых связаны с одним или несколькими внутриклеточными прикрепительными белками, а внеклеточные домены взаимодействуют либо с внеклеточным матриксом, либо с внеклеточными доменами трансмембранных линкерных гликопротеинов другой клетки.

14.1.3. Адгезионные соединения связывают внутриклеточные пучки актиновых филаментов с такими же пучками других клеток или с внеклеточным матриксом [3]

Межклеточные адгезионные соединения весьма многообразны. Во многих неэпителиальных тканях они принимают форму точечных или линейных контактов, связывающих актиновые филаменты в кортикальной цитоплазме смежных клеток. В эпителиальных пластах они часто образуют непрерывный адгсзионный пояс (zonula adherens) вокруг каждой из контактирующих клеток, расположенных около апикального конца клетки чуть ниже плотного соединения. У соседних клеток адгезионные пояса находятся прямо друг против друга и удерживаются вместе с помощью Са2 +-зависимого механизма. Трансмембранные линкерные гликопро-теины, участвующие в таком соединении, по-видимому, относятся к семейству Са2 + -зависимых молекул межклеточной адгезии, называемых кадгеринами (cadherins) (разд. 14.3.7). Адгезионный пояс называют также опоясывающей десмосомой, однако следует учитывать, что он в хими-

479

Рис. 14-8. Адгезионные пояса (опоясывающие десмосомы) между эпителиальными клетками тонкой кишки. Такое соединение опоясывает каждую из контактирующих клеток; его характерная особенность-наличие сократимого пучка актиновых филаментов, лежащих под

цитоплазматической поверхностью мембраны в зоне соединения.

ческом отношении существенно отличается от настоящей десмосомы (см. ниже).

Внутри каждой клетки под адгезионным поясом лежит сократимый пучок актиновых филаментов, расположенных параллельно плазматической мембране; к адгеэионному поясу этот пучок прикреплен с помощью комплекса внутриклеточных белков, содержащего винкулин (разд. 11.2.8). Таким образом, актиновые пучки посредством трансмембранных гликопротеинов организуются в плотную межклеточную сеть (рис. 14-8), которая, как полагают, участвует в одном из фундаментальных процессов морфогенеза животных-в сворачивании эпителиальных пластов в трубки и другие подобные структуры (рис. 14-9).

Рис. 14-9. Сворачиванис эпителиального слоя в трубку (например, при образовании нервной трубки). Как полагают, координированное сокращение пучков актиновых филаментов, лежащих вдоль опоясывающих десмосом, приводит к сужению апикальных концов клеток в

определенных участках клеточного слоя, и в результате этот слой свертывается в трубку, которая затем отделяется от образовавшего ее эпителия.

480

Например, согласованное сокращение таких пучков в нервной пластинке приводит к сужению апикального конца каждой эпителиальной клетки, и в результате этого пластинка свертывается в нервную трубку на ранней стадии развития позвоночного (разд. 16.1.10).

Адгезионные соединения между клетками и матриксом связывают клетки и их актиновые филаменты с внеклеточным матриксом. Например, фибробласты при росте на искусственном субстрате, покрытом молекулами внеклеточного матрикса, плотно прикрепляются к нему в специализированных участках плазматической мембраны, называемых локальными контактами или адгезионными пластинками, как раз там, где кончаются пучки актиновых филаментов (разд. 11.2.8). Многие клетки в тканях устанавливают сходные локальные контакты с окружающим их внеклеточным матриксом. Крупный трансмембранный линкерный гликопротеин (который служит на клеточной поверхности рецептором для гликопротеина внеклеточного матрикса - фибронектина, см. разд. 14.2.13) в таких пластинках образует одно из связующих звеньев между матриксом и пучками актиновых филаментов. Внеклеточный домен такого рецептора для фибронектина связывается с молекулами фибронектина на поверхности культуральной чашки, а его внутриклеточный домен связывается с одним из прикрепительных белков -талином, который в свою очередь присоединяется к винкулину; винкулин же присоединен к одному или двум другим белкам, которые связываются с актином (см. рис. 1138).

Рецептор фибронектина - это только один представитель обширного семейства трансмембранных линкерных гликопротеинов, называемых интегринами (разд. 14.2.17), которые, по-видимому, связывают пучки актиновых филаментов с внеклеточным матриксом. Некоторые интегрины хорошо изучены, и на их примере видно, как трансмембранные линкерные гликопротеины, участвующие в межклеточной адгезии (кадгерины и др.), могут соединять пучки кортикальных актиновых филаментов соседних эпителиальных клеток; однако в адгезионных поясах винкулин присутствует без талина.

14.1.4. Десмосомы связывают промежуточные филаменты соседних клеток; полудесмосомы связывают эти филаменты с базальной мембраной [4]

Десмосомы представляют собой «точечные» структуры межклеточного контакта, которые, подобно заклепкам, скрепляют клетки в различных тканях, главным образом в эпителиальных (рис. 14-10). Они служат также местами прикрепления промежуточных филаментов (разд. П.5), образующих структурный каркас цитоплазмы, который противодействует растяжению. Таким образом, промежуточные филаменты соседних клеток объединены при помощи десмосом в непрерывную сеть, пронизывающую всю ткань. Тип промежуточных филаментов, прикрепленных к десмосомам, зависит от типа клеток: в большинстве эпителиальных клеток это кератиновые филаменты, в волокнах сердечной мышцы- десминовые, а в некоторых клетках, покрывающих поверхность мозга-виментиновые (см. табл. 11-5).

Электронная микроскопия и биохимические исследования показывают, что десмосома состоит из (1) плотной цитоплазматической пластинки, образованной комплексом внутриклеточных белков, ответственных за прикрепления цитоскелета, и (2) трансмембранных линкерных гликопротеинов, которые связаны с пластинкой и взаимодействуют между собой своими внеклеточными доменами, удерживая вместе смежные плазматические мембраны (рис. 14-11). Роль десмосом в соединении клеток выявляется при некоторых формах потенциально смертельного

Рис. 14-10. Электронная микрофотография трех десмосом между двумя эпителиальными клетками в кишке крысы. [N. В. Gilula. In: Cell Communication (R.P. Cox, ed.), pp. 1-29. New York, Wiley, 1974. Reprinted by permission of John Wiley a. Sons, inc.]

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]