Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шишков. Рабочие процессы в РДТТ..doc
Скачиваний:
1176
Добавлен:
09.02.2015
Размер:
8.17 Mб
Скачать

2.3.4. Анализ отказов двигателя при стендовых испытаниях

Аномальные испытания могут сопровождаться разрушением РДТТ (рис. 2.7, а) или проявляться в виде недопустимых (выходящих за пре­делы заданных требований) отклонений каких-либо параметров, напри­мер, давления в РДТТ (рис. 2.1,6).

Анализ неисправностей, отказов и аварий двигателя при стендовых испытаниях необходим не только для доработки двигателя, но и для своевременного в случае необходимости внесения корректив в методо­логию и техническую оснащенность стендовых испытаний.

Возможны следующие причины неисправностей двигателя:

  1. конструктивные недостатки двигателя;

  1. отступления от технологического процесса при изготовлении его узлов;

  1. производственные дефекты;

  2. искажения датчиковой аппаратуры;

  3. неполное представление об условиях работы двигателя на испытательном стенде;

  4. выход из строя стендового оборудования;

  5. неисправности в работе систем, установленных на двигателе. На начальном этапе отработки возможные неисправности чаще всего связаны с недостаточным обоснованием новых схемно-конструктивных решений и неполнотой сведений о некоторых рабочих процессах и об ус­ловиях работы отдельных узлов; на поздних этапах отработки — со случайными производственными дефектами, с нарушениями условий подготовки и проведения стендовых испытаний.

Рис. 2.7 Зависимости давления от времени при разрушении двигателя (а) и нерас­четной работе узлов (б): 1 - разрушение при выходе на режим (разрушение заряда, образование дополнительной поверхности горения); 2 - разрушение из-за дефекта бронирующего покрытия, отслоения защитно-крепящего слоя; 3 - разрушение из-за нарушения герметичности корпуса; 4 - расчетная зависимость; 5 - нерасчетное срабатывание воспламенительного устройства; 6 - падение давления из-за случайного увеличения площади критического сечения сопла; 7 - увеличение давления в конце работы двигателя (из-за разрушения остатков заряда, возрастания скорости горения периферийных слоев твердого топлива вследствие локальных физико-химических процессов)

При анализе результатов аномального испытания составляют перечень возможных причин, включая прежде всего индивидуальные конструктивные и технологические отличия данного конкретного двигателя и условий его испытания [33]. Последствия оценивают с помощью математического и физического моделирования, стремясь к наиболее достоверному воспроизведению аномального процесса.

2.3.5. Горение старого заряда в камере прямоточного двигателя

Старт ракеты с прямоточным воздушно-реактивным или ракетно-прямоточным двигателями может быть осуществлен с помощью размещенного в камере твердотопливного заряда. В этой же камере после выгорания заряда происходит горение (дожигание) топлива ПВРД (РПД) в смеси с воздухом. Могут быть два варианта условий горения стартового заряда:

1) при наличии специального стартового сопла, отбрасываемого после сгорания заряда (рис. 2.8);

2) при отсутствии сопла (бессопловый двигатель); в этом случае канал заряда выполняется коническим в выходной части (рис. 2.9), скорость течения на входе в эту часть равна скорости звука, на большей части поверхности канала происходит интенсивное эрозионное горение; для топлива Нf() = 2...4 при= 1 (см. п. 3.3.1).

При условии, что горение происходит по поверхности круглого цилиндрического канала постоянной длины, отношение значения расхода топлива в конце работы такого двигателя к начальному приблизительно равно (); падение давления по длине зарядар(х) : = (1 +к)(1+к). Процесс перехода с ракетного на прямоточ­ный режим начинается в конце падения давления в камере после сгора­ния стартового заряда. Под действием скоростного напора воздушного потока вскрывается заглушка на выходе из каналов воздухозаборника, одновременно отстреливается стартовое сопло (1-й вариант).

С целью надежного включения прямоточного двигателя должны быть обеспечены соответствующие запасы тяги двигателя и устойчивости работы воздухозаборника, исключено излишнее торможение. Поэтому время задержки включения воспламенительного устройства прямоточного двигателя ограничено снизу и сверху.

На переходный процесс с ракетного на прямоточный режим работы оказывают влияние следующие факторы:

1) догорание остатков стартового заряда твердого топлива и тепломассовыделение с поверхности тепловой защиты камеры дожигания;

2) дополнительные потери полного давления в камере дожигания, связанные с процессом срабатывания заглушек воздухозаборника;

3) высота (расход воздуха), на которой происходит запуск (запас устойчивости воздухозаборника уменьшается с ростом высоты).

Рис. 2.8 Режим работы двигательной установки ракеты РПД на твердом топливе:

а – стартовый режим; б – работа РПД; 1 – ГГ; 2 – стартовый заряд твердого ракетного топлива; 3 – стартовое сопло; 4 – заглушка в входа камеру дожигания; 5 – сопловой блок ГГ; 6 – заряд твердого топлива с избытком горючего.

Рис. 2.9, Изменение давления в осесимметричном бессопловом РДТТ (д) и расчет­ные газодинамические параметры в плоском бессопловом РДТТ (б, горение по цилиндрической части канала):

1 - давление у переднего торца заряда; 2 - давление в выходном сечении цилинд­рической части канала; 3 — линии постоянства числа М; 4 – изобары.