Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лира---КНИГА_1.doc
Скачиваний:
41
Добавлен:
09.11.2019
Размер:
19.38 Mб
Скачать
    1. Библиотека конечных элементов для физически нелинейных задач

Конечные элементы предназначены для моделирования и анализа напряженно-деформированного состояния конструкций с учетом физической нелинейности материала, из которого они выполнены.

      1. Стержневые конечные элементы (кэ 210 и 205)

КЭ 210 – стержень с переменными координатными функциями.

Матрица жесткости элемента на каждом шаге строится на основании функций, удовлетворяющих однородным уравнениям равновесия при интегральных жесткостях предыдущего шага. При решении уравнений равновесия используется численное интегрирование по пятиточечной квадратурной схеме Гаусса.

КЭ 205 - Суперэлементный стержневой элемент. Элемент разбивается по длине (между жесткими вставками) на k (3 k 21) равных подэлементов (по умолчанию k = 3). Матрица жесткости подэлемента строится по полученным на предыдущем шаге интегральным жесткостям и координатным функциям конечного элемента 10. Матрица жесткости элемента получена суперэлементным методом.

Интегральные жесткости определяются на каждом шаге для сечений, расположенных в точках интегрирования по длине стержня, по значениям модулей Юнга в дискретных точках поперечного сечения в соответствии с заданным пользователем дроблением.

В стержневых конечных элементах определяются следующие интегральные жесткости:

(7.1)

где - значение модуля Юнга в точке для основного материала сечения (бетона);

- значение модуля Юнга в точке для армирующего материала.

Текущие значения модулей Юнга в точке определяются по выбранной зависимости напряжение - деформация из предлагаемого набора библиотеки законов деформирования. Обобщенная деформация в точке определяется из гипотезы плоских сечений:

(7.2)

      1. Конечные элементы тонких пластин и пологих оболочек (кэ 221-224, 227, 230, 241, 242, 244)

Предназначены для решения плоской задачи теории упругости (плоское напряженное состояние и плоская деформация), а также прочностного расчета тонких и пологих оболочек с учетом физической нелинейности материала.

Теоретические сведения о конечно-элементном подходе к решению задачи изгиба и плоской задачи теории упругости справедливы и для плоских физически-нелинейных конечных элементов.

Элементы матрицы жесткости определяются с использованием численного интегрирования в следующей форме:

, (7.3)

где: Ω -область конечного элемента;

[Е ] - матрица интегральных жесткостей k-го шага;

{} - вектор деформаций.

Размерность и компоненты матрицы упругих характеристик зависят от типа конечного элемента. Матрица упругих характеристик конечного элемента плоской пологой оболочки (тип КЭ 241, 242 и 244) имеет вид, представленный в табл. 7.7.:

Таблица 7.7

F1

F2

C1

C2

F3

F4

C3

C4

F5

C5

C1

C2

D1

D2

C3

C4

D3

D4

C5

D5

где:

Fi- интегральные жесткости плоского напряженного состояния;

Di- интегральные жесткости задачи изгиба;

Сi- интегральные жесткости взаимовлияния этих двух состояний.

Интегральные жесткости вычисляются численным интегрированием по толщине оболочки с учетом наличия арматурных включений. Они зависят от положения точки в плане.

Например:

;

; (7.4)

,

где:

Eб(z) - модуль Юнга основного материала сечения (бетона);

Eа(z) - модуль Юнга армирующего материала;

ν(z) - коэффициент Пуассона в точке;

n - число арматурных включений по толщине сечения оболочки.

Конечные элементы плоской задачи (КЭ 221  230) представляют собой частные случаи конечного элемента оболочки. Для них интегральные жесткости изгиба и взаимовлияния равны нулю. Для решения плоской задачи применяется шагово-итерационный метод.

Определение новых значений модуля Юнга и приведенного коэффициента Пуассона производится по выбранному пользователем закону деформирования материала (табл. 7.2), на основании определенной в данной точке обобщенной деформации:

, (7.5)

для оболочек и на основании ε1, ε2 для плоской задачи.

Определение прочности двухкомпонентного (железобетонного) элемента производится на каждом шаге приложения нагрузки по полученным напряжениям и деформациям в центре тяжести КЭ.

Проверяются условия прочности основного материала (бетона) по главным напряжениям (1, 2) и деформациям (1, 2) в соответствии с заданным законом деформирования материала. При этом фиксируется образование одиночных и перекрестных трещин или выкалывание материала при сжатии.

Прочность арматуры в элементе с трещинами определяется с учетом нагельного эффекта в соответствии с [6], при этом фиксируется текучесть, разрывы или смятие (срез) арматуры.

Для элементов бетонных и железобетонных стержней и оболочек определяется также прочность сечений в соответствии с действующими нормами.

Вся информация о состоянии КЭ на каждом шаге выдается в текстовый файл «Сведения о состоянии материала».

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]