Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лек СРВ от Анн.doc
Скачиваний:
11
Добавлен:
09.11.2019
Размер:
2.26 Mб
Скачать

Лекция №12 Аппаратное и программное обеспечение промышленных систем реального времени (псрв)

План лекции:

Введение

1. Организация ПСРВ

2. Аппаратная архитектура

3. Стандарты шин

4. Технологии VME и PCI

5. Мезонинные технологии

6. Полевые системы

7. Программное обеспечение ПСРВ

8. Управление производством

Введение

В эпоху торжества Internet, мультимедиа и пакета BackOffice как-то неловко обращать внимание публики на промышленность. Но нужно. В мире, который не ограничен делопроизводством, торговлей, банковскими операциями, измерительные и управляющие системы живут, а где-то даже побеждают. Эти системы не видны, но именно они обеспечивают движение самолетов на авиалиниях, на них основана работа атомных электростанций, телефонных сетей, автопилотов поточных линий на промышленных предприятиях. С их помощью осуществляется распределение электроэнергии, управление полетом космических аппаратов и работой металлорежущих станков, регулирование микроклимата в зданиях. Полагаться на людей нельзя - и ответственность в критических приложениях перекладывается на автоматику.

Автоматическое управление начиналось с простых релейных схем, но теперь уровень сложности задач предполагает опору на цифровую обработку информации с использованием практически всех современных компьютерных технологий. Динамика развития индустрии промышленных систем отражена в отчете [1], данные которого основаны на опросах потребителей о закупаемых продуктах. Если в 1993 году было упомянуто 45 продуктов, то в 1996 году эта цифра выросла до 74 с основными закупками в трех крупных областях:

 управление процессами и инструментами (33%);

 интерфейс оператор - компьютер (37%);

 двигатели, приводы и управление движением (30%).

В таблице 1 приведены данные о приложениях, которые наиболее интенсивно используются в промышленных системах. Первые три места занимают распределенные системы управления, приложения на основе ПК и электроника для авиационных моторов, суммарно составляя 30% всех затрат в этой области. Другой аспект раскрывается в таблице 2, показывающей процентное распределение покупок по отраслям промышленности. Можно отметить следующие тенденции: увеличивается присутствие ПК в промышленном управлении, а по отраслям растут темпы автоматизации машиностроения; в химическом производстве динамика сохраняется; в нефтепереработке заметно небольшое замедление.

Таблица 1. Наиболее популярные продукты для промышленных систем

Таблица 2. Затраты на автоматизацию по отраслям промышленности

1. Организация промышленных систем

В качестве примера можно взять систему управления ректификационной колонной, которая отделяет легкие химические фракции от тяжелых при перегонке бензина из нефти. В такой системе компьютер получает информацию об уровнях и скоростях течения различных жидкостей, о температуре и давлении. Основываясь на текущих значениях, он выдает команды на регулировку параметров и тем самым определяет объемы и качественные показатели конечных продуктов. Подобная система управления обычно нацелена на минимизацию энергетических затрат.

На этом примере можно рассмотреть основные части промышленной системы.

 Центральным элементом в ней служит вычислительный блок, который в зависимости от решаемой задачи может быть либо простейшей микроплатой, либо многопроцессорным комплексом с внешней памятью большого объема, базой данных и средствами сетевого взаимодействия. Вычислительный блок решает две задачи. Первая - это собственно программное управление на основе модели реального процесса. Вторая - организация интерфейса с обслуживающим персоналом. Здесь визуализируется состояние объекта управления путем вывода его параметров и статистических данных, а также содержатся средства для ручного управления.

 Информация об объекте, как правило аналоговая, собирается датчиками. Некоторые из датчиков пассивны: управляющая система сама периодически их опрашивает. Другие датчики самостоятельно прерывают работу системы, передавая ей информацию.

 Воздействие на регулируемый процесс осуществляется с помощью электрических или электромеханических исполнительных механизмов. Например, это может быть включение/выключение вентилятора с целью регулирования температуры.

 Между датчиками и исполнительными устройствами, с одной стороны, и устройствами цифровой обработки - с другой ставятся алфавитно-цифровые (АЦП) и цифро-аналоговые (ЦАП) преобразователи. Кроме того, для управления исполнительными устройствами применяются программируемые логические контроллеры (ПЛК).

В развитии промышленных систем автоматизации в основном просматривались общие тенденции компьютерной индустрии, однако можно указать несколько принципиальных особенностей, которые требуют специализированных решений.

1. Промышленные системы функционируют в тяжелых для электронной техники условиях внешней среды, поэтому по сравнению с обычными компьютерами они должны иметь повышенную термо-, вибро-, ударопрочность.

2. Требуется подключать гораздо более широкую номенклатуру внешних устройств.

3. Время реакции системы на изменения параметров объекта управления определяется внешними реальными временными интервалами - такие системы называются системами реального времени. Для особо ответственных приложений, например при управлении самолетом, реакция должна быть практически мгновенной. Это, в частности, предполагает повышенную надежность и аппаратной, и программной частей.

Традиционный подход выделяет в системах промышленной автоматизации пять уровней: ввод/вывод (В/В), управление В/В, диспетчерское управление и сбор данных (SCADA), управление производством (MES) и планирование ресурсов предприятия (MRP). Таким образом при разработке подобных систем решаются и аппаратные, и программные задачи: первый и частично второй уровень составляют аппаратную базу для программного обеспечения верхних слоев.