Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты вышка.doc
Скачиваний:
17
Добавлен:
19.09.2019
Размер:
621.06 Кб
Скачать
  1. Определение производной. Ее физический смысл. Определение дифференцируемой функции. Сформулировать теорему о связи между дифференцируемостью и непрерывностью функции.

Производная — основное понятие дифференциального исчесления, характеризующее скорость изменения функции.

Производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Функцию, имеющую конечную производную, называют дифференцируемой.  Процесс вычисления производной называется дифференцированием

Если положение точки при её движении по числовой  прямой задаётся функцией Sf(t), где t – время движения, то производная функции S – мгновенная скорость движения в момент времени t. По аналогии с этой моделью вообще говорят о том, что производная функции у f(x) – скорость изменения функции в точке х.

Теорема (необходимое условие дифференцируемости функции). Если функция дифференцируема в точке, то она непрерывна в этой точке.

Доказательство. Пусть функция у=f(xдифференцируема в точке х0. Дадим в этой точке аргументу приращение х. Функция получит приращение у. Найдем  .

.

Следовательно, у=f(xнепрерывна в точке х0.

Следствие. Если х– точка разрыва функции, то в ней функция не дифференцируема.

Утверждение, обратное теореме, не верно. Из непрерывности не следует дифференцируемость.

Пример. у=|х| , х0=0.

 

            

х>0,              ;

х<0,              .

В точке х0=0 функция непрерывна, но производной не существует.

  1. Геометрический смысл производной. Уравнения касательной и нормали

Геометрический смысл производной.  Рассмотрим график функции  y f ( x ): 

Из рис.1  видно, что для любых двух точек A и B графика функции:  

где    - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то    неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A ( x0 ,  f ( x0  ) ). В общем случае уравнение прямой с угловым коэффициентом  f ’( x0 )  имеет вид: 

y = f ’( x0 ) · x + b .

Чтобы найти b, воспользуемся тем, что касательная проходит через точку A:

f ( x0 ) = f ’( x0 ) · x0 + b ,

отсюда,  b =  f ( x0 ) – f ’( x0 ) · x0 , и подставляя это выражение вместо  b, мы получим  уравнение касательной:

y =  f ( x0 ) +  f ’( x0 ) · ( x – x0  ) .

Нормалью к графику функции y = f (x) в точке A (x0y0) называется прямая, проходящая через точку A и перпендикулярная касательной к этой точке. Она задается уравнением 

что следует из свойства угловых коэффициентов перпендикулярных друг другу прямых.

В случае бесконечной производной   касательная в точке x0 становится вертикальной и задается уравнением x = x0, а нормаль – горизонтальной: y = y0.