Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Chislennye_metody 2.docx
Скачиваний:
15
Добавлен:
09.09.2019
Размер:
1.03 Mб
Скачать

Метод Гаусса – Зейделя

Расчетные формулы имеют вид:

т.е. для подсчета i–й компоненты (k+1)–го приближения к искомому вектору используется уже вычисленное на этом, т.е. (k+1)–м шаге, новые значения первых i–1 компонент.

Подробные формулы имеют вид:

Достаточное условие сходимости этого метода такое же, как и для метода простой итерации, т.е. диагональное преобладание:

Начальное приближение:

Найдем решение предыдущей системы уравнений методом Гаусса – Зейделя.

Расчетные формулы:

k

x1

x2

x3

точность

0

0

0

0

 

1

1.250

0.250

0.075

1.2500

2

1.106

0.321

0.132

0.1438

3

1.056

0.340

0.151

0.0500

4

1.042

0.344

0.156

0.0139

5

1.039

0.346

0.157

0.0036

Из таблицы видно, что нужная точность достигнута уже на 5–ой итерации вместо 13–ой по методу простой итерации и значения корней более близки к значениям, полученным методом обратной матрицы.

  1. Разностные методы при решении обыкновенных дифф. Уравнений.

БИЛЕТ 9_______________________________

  1. Метод Гаусса решения слау

Пусть исходная система выглядит следующим образом

Матрица   называется основной матрицей системы,   — столбцом свободных членов.

Тогда согласно свойству элементарных преобразований над строками основную матрицу этой системы можно привести к ступенчатому виду(эти же преобразования нужно применять к столбцу свободных членов):

При этом будем считать, что базисный минор (ненулевой минор максимального порядка) основной матрицы находится в верхнем левом углу, то есть в него входят только коэффициенты при переменных  [3].

Тогда переменные   называются главными переменными. Все остальные называются свободными.

Если хотя бы одно число  , где  , то рассматриваемая система несовместна.

Пусть   для любых  .

Перенесём свободные переменные за знаки равенств и поделим каждое из уравнений системы на свой коэффициент при самом левом   ( , где   — номер строки):

, где 

Если свободным переменным системы (2) придавать все возможные значения и решать новую систему относительно главных неизвестных снизу вверх (то есть от нижнего уравнения к верхнему), то мы получим все решения этой СЛАУ. Так как эта система получена путём элементарных преобразований над исходной системой (1), то по теореме об эквивалентности при элементарных преобразованиях системы (1) и (2) эквивалентны, то есть множества их решений совпадают.

Следствия: 1: Если в совместной системе все переменные главные, то такая система является определённой.

2: Если количество переменных в системе превосходит число уравнений, то такая система является либо неопределённой, либо несовместной.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]