Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
NI_R2.DOC
Скачиваний:
5
Добавлен:
29.08.2019
Размер:
667.65 Кб
Скачать

1.2. Кривые второго порядка Для замечаний

1.2. Кривые второго порядка

Будем рассматривать линии, уравнения которых в декартовой системе координат являются алгебраическими уравнениями второй степени, то есть будем рассматривать алгебраические кривые второго порядка. Будут рассмотрены три вида линий второго порядка: эллипсы, гиперболы и параболы. Основной целью является ознакомление с важнейшими геометрическими свойствами указанных линий.

1.2.1. Эллипс

1.2.1.1. Определение эллипса и вывод его канонического уравнения

Эллипсом называется геометрическое место точек на плоскости, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина.

Рис.1

Для вывода уравнения эллипса выберем систему координат XOY так, чтобы фокусы эллипса F1 и F2 лежали на оси абсцисс, а начало координат делило бы расстояние между фокусами пополам (Рис.1). Обозначим F1F2=2c. Тогда координаты фокуса F1 будут (с;0), а координаты фокуса F2 будут (-с;0).

Возьмем произвольную точку М(x,y), лежащую на эллипсе. Соединим точку М с фокусами F1F2. Длины отрезков MF1 и MF2 обозначим соответственно через r1 r2: МF1=r1; MF2=r2. Числа r1 и r2 называются фокальными радиусами точки М эллипса. Учитывая, что сумма r1 и r2 есть величина постоянная (это следует из определения эллипса) обозначим: r1+r2=2a, следует 2а>2c или a>c. В противном случае либо не существует точек, удовлетворяющих поставленным требованиям, либо совокупность этих точек сводится к отрезку F1F2.

На основании определения эллипса как геометрического места точек, можно утверждать, что для всех точек эллипса, и только для них, должно выполняться равенство:

r1+r2=2a (1)

Определим r1 и r2 по формулам расстояния между двумя точками:

(2)

(3)

Поставляя найденные значения r1 и r2 в уравнение (1), получим:

(4)

Уравнение (4) является уравнением эллипса. Однако полученная форма уравнения является неудобной для пользования, поэтому обычно уравнение эллипса дается в ином виде.

Преобразуем уравнение (4). Пусть М(x,y) - точка эллипса, то есть равенство (4) имеет место. Перенесем первый радикал в правую часть и затем возведем обе части в квадрат:

(5)

или

выделим отсюда оставшийся радикал:

(6)

Возведя обе части последнего равенства в квадрат, получим:

(7)

откуда

(8)

Так как по условию a>c, то a2 - c2>0. Обозначим разность a2 - c2, как величину положительную, через b2= a2 - c2. Очевидно, что

b2 < a2

Подставляя b2= a2 - c2 в равенство (8), получим:

b2x2 + a2y2 = a2b2,

и разделив последнее равенство на a2b2, окончательно получим:

(9)

Пусть теперь x и y - любые действительные числа. Рассмотрим уравнение (9). По доказанному, всякая пара чисел x, y, удовлетворяющая уравнению (4), удовлетворяет и уравнению (9). Можно доказать, что и наобаро, всякая пара чисел х, у, удовлетворяющая уравнению (9) удовлетворяет уравнению (4). Произведя предыдущие выкладки в обратном порядке, мы из равенства (9) получим сначала равенство (8), затем равенство (7), которое сейчас запишем в виде:

a2 ((x - c)2 + y2 = (a2 - cx)2.

Извлекая корень из обеих частей этого равенства, получим

(10)

Заметим теперь, что в силу равенства (9) должно быть |x|  a. Так как |x|  a и c < a, то |cx| < a, следовательно, число a2 - cx положительно. Поэтому в правой части равенства (10) необходимо взять знак плюс. Так мы приходим к равенству (6), после чего получим равенство (5); последнее мы напишем в виде:

Отсюда

(11)

Исследуем величину

(x - c)2 + y2 = x2 - 2cx + c2 + y2 (12)

В силу равенства (9) имеем x2  a2. Далее |cx| < a2, cледовательно, число -2cx по абсолютному значению меньше 2a2. Наконец, также из равенства (9) заключаем, что y2  b2, то есть y2  a2 - c2 или с2 + y2  a2. В силу этих неравенств вся сумма в правой части (12) меньше 4а2, значит, корень из этой суммы меньше 2а. Поэтому величина, стоящая внутри скобок в правой части (11), положительна, следовательно, в равенстве (11) перед скобками нужно брать знак плюс. Таким образом мы получаем:

откуда сразу следует равенство (4).

Итак, уравнение (4) выводится из уравнения (9), как и уравнение (9) выводится из уравнения (4). Тем самым доказано, что уравнение (9) есть уравнение данного эллипса, так как оно эквивалентно уравнению (4).

Уравнение (9) называется каноническим уравнением эллипса, это уравнение второй степени; таким образом, эллипс есть линия второго порядка.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]