Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЖГ шпора1234.docx
Скачиваний:
59
Добавлен:
01.08.2019
Размер:
2.54 Mб
Скачать
  1. Методы исследования течений сплошных сред (подходы Эйлера и Лагранжа, физическое моделирование, численное моделирование).

Подход Лагранжа заключается в том, что в начальный момент времени фиксируется произвольная частица, начальное положение которой оценивается радиус-вектором с координатами , называемыми переменными Лагранжа:

По изменению координат рассчитываются скорости течения:

Движение считается известным, если определены параметрические уравнения траекторий всей совокупности частиц, задающих в начальный момент состояние потока на входе в изучаемую область.

Подход Эйлера изучает изменение параметров течения для выбранной фиксированной точки пространства, через которую с течением времени последовательно проходит множество частиц. Для определения течения требуется знать поле скоростей в любой момент времени для всей исследуемой области:

  1. Механизмы перехода кинетической энергии в потенциальную энергию. Параметры торможения. Распределение параметров состояния по обводам обтекаемого тела (с лр).

    1. Диссипация

Пограничный слой на стенке является двумерным, поскольку скорость потока меняется и по нормали к поверхности, и вдоль поверхности. Поток вне пограничного слоя, называемый основным (невозмущенным) или ядром потока, практически одномерен, т.к. скорость среды может меняться только в узком слое вдоль потока под влиянием трения у поверхности. Приходящийся на единицу массы секундные составляющие работы вязкостных сил для двумерного потока будут равны:

Составляющая скорости , вызванная выделением тепла трения, в силу ее малости, а также производные от нее, опущены. Непосредственно на поверхности скорость равна нулю. Следовательно работа по переносу количества движения на стенке равна нулю и вся работа сил вязкости полностью является работой тепловыделения

Итак, на обтекаемой стенке в сплошных течениях всегда имеет место полная диссипация кинетической энергии. Она приводит к повышению по мере приближения к стенке только внутренней энергии газа , потенциальная энергия давления остается неизменной. Диссипативный процесс необратим, поэтому израсходованная на тепло кинтеическая энергия не может восстановиться в виде механической, какой является энергия давления. В продольном по отношению к обтекаемой поверхности направлении диссипация в силу своей необратимости приводит к уменьшению потенциальной энергии давления, т.к. эта энергия расходуется на восполнение потерь кинетической энергии вдоль пограничного слоя. Статическое давление и плотность вдоль пограничного слоя уменьшаются. Это справедливо только для прямолинейных каналов постоянного поперечного сечения с дозвуковым потоком.

    1. Изоэнтропное торможение

В изоэнтропном процессе торможения потерь механической энергии нет, соответственно давление и плотность торможения остаются вдоль канала постоянными.

    1. Политропное торможение (диссипация + изоэнтропное торможение)

Сопровождается потерями механической энергии, давления и плотности торможения (меньшими, чем при полной диссипации).

Для получения истинного значения полных энтальпии и температуры достаточен энергоизолированный процесс. Внутренние тепловые преобразования не оказывают влияния на суммарную энергию потока в ее тепловом эквиваленте.

статические и полные параметры можно связать по идеальной адиабате:

Сами полные параметры могут быть определены по формулам:

При постоянной плотности давление торможения находится проще: