Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Механика сплошных сред

.docx
Скачиваний:
36
Добавлен:
29.03.2015
Размер:
46.47 Кб
Скачать

Круг задач, изучаемых механикой сплошных сред

Механика сплошных сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах и позволяющую решать большинство задач, рассматриваемых в традиционных общетехнических дисциплинах .

1)Гидромеханика- раздел механики сплошных сред, изучающая равновесие и движение жидкости.

Кроме того, в область изучения гидромеханики как науки входит взаимодействие между жидкостью и телами, погружёнными в жидкость полностью либо частично, а также движущимися в жидкости.

Гидромеханика подразделяется на гидростатику, изучающую жидкость в равновесии, а также гидродинамику, изучающую движение жидкости.

1.1)Гидростатика — раздел физики сплошных сред, изучающий равновесие жидкостей, в частности, в поле тяжести.

Прежде всего, полезно сравнить гидростатику с теорией упругости, изучающей равновесие твёрдых тел. В отличие от твёрдого тела, жидкость не «держит» сдвиговые напряжения. Именно поэтому в жидкости не может существовать анизотропии напряжений, а значит вместо многокомпонентного тензора, напряжения в жидкости описываются единственной величиной — давлением. Отсюда вытекает закон Паскаля: давление, оказываемое на жидкость, передаётся жидкостью одинаково во всех направлениях.

Основной закон гидростатики для толщи жидкости — зависимость давления от глубины, который для несжимаемой жидкости в однородном поле тяжести имеет вид . Из этого закона следует равенство уровней в сообщающихся сосудах, закон Архимеда: на тело, погружённое в жидкость, действует выталкивающая сила , где  — плотность жидкости, а  — объём тела, погруженного в жидкость.

Наглядно представить себе закон Архимеда можно следующим образом. Замена тела помещенного в жидкость на саму эту жидкость ничего не изменит для окружающей тело жидкости. При этом жидкость-заменитель будет невесомой, поскольку она идентична остальной жидкости и иной вес означал бы движение вверх или вниз и возможность получения энергии из ничего. А поскольку жидкость-заменитель «на воздухе» весила бы как раз столько, сколько положено по закону Архимеда, , то именно этот вес тело, погружённое в жидкость, теряет.

Форма свободной поверхности жидкости определяется комбинацией внешних сил (прежде всего, сил тяготения) и сил поверхностного натяжения. Для больших масс жидкости преобладают силы тяготения и свободная поверхность принимает форму эквипотенциальной поверхности, а при размерах порядка или меньше сантиметра (для пресной воды) определяющими являются капиллярные силы.

2.1) Гидродинамика — раздел физики сплошных сред, изучающий движение идеальных и реальных жидкости и газа. Как и в других разделах физики сплошных сред, прежде всего осуществляется переход от реальной среды, состоящей из большого числа отдельных атомов или молекул, к абстрактной сплошной среде, для которой и записываются уравнения движения.

Основные разделы гидродинамики:

  1. Идеальная среда

  2. Гидродинамика ламинарных течений

  3. Турбулентность

  4. Сверхзвуковая гидродинамика

  5. Тепломассообмен

  6. Геофизичесая гидродинамика

  7. Магнитная гидродинамика

  8. Прикладная гидродинамика

  9. Реология

2)Аэромеханика- наука, раздел механики, изучающий равновесие и движение газообразных сред и механических воздействий этих сред на погружённые в них твёрдые тела.

Аэромеханика подразделяется на аэродинамику и аэростатику.

2.1)Аэродинамика- Раздел гидроаэромеханики, в котором изучаются законы движения воздуха и силы, возникающие на поверхности тел, относительно которых происходит его движение. В аэродинамике рассматривают движение с дозвуковыми скоростями, т. е. в нормальных условиях до 340 м/с (1200 км/ч).

Прикладные задачи аэродинамики:

  • распределение давления на поверхности тела;

  • определение сил и моментов, действующих на обтекаемое газом тело;

  • распределение скоростей в воздушном потоке, обтекающем тело;

  • расчёт вентиляции;

  • расчет пневмотранспорта.

Специальный раздел аэродинамики — аэродинамика самолёта — занимается разработкой методов аэродинамического расчёта и определением аэродинамических сил и моментов, действующих на самолёт в целом и на его части — крыло, фюзеляж, оперение и т. д. К аэродинамике самолёта относят: расчёт устойчивости, балансировки самолёта, теорию воздушных винтов, теорию крыла. Вопросы, связанные с изменяющимся нестационарным режимом движения летательных аппаратов, рассматриваются в специальном разделе —динамике полёта.

Результаты аэродинамики находят многообразные применения в самолётостроении, авиастроении, автомобилестроении и в различных летательных аппаратах.

Аэродинамика тесно связана с газовой динамикой, которая возникла как дальнейшее развитие аэродинамики и имеет дело с ситуациями, в которых условия существенно отличаются от нормальных.

2.2)Аэростатика- раздел гидроаэромеханики, в котором изучается равновесие газообразных сред, в основном атмосферы.

3) Теория упругости и пластичности состоит из:

Теории упругости-  раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.

Главная задача теории упругости — выяснить, каковы будут деформации тела и как они будут меняться со временем при заданных внешних воздействиях. Основной системой уравнений для решения этой задачи являются три уравнения равновесия, содержащие шесть неизвестных компонентов симметричного тензора напряжений. Симметричность тензора напряжений постулируется при этом гипотезой парности касательных напряжений. Для замыкания системы используют так называемые уравнения совместности деформаций (действительно, для тела, остающегося в процессе деформации сплошным, шесть компоненты тензора деформации не могут быть независимыми — эти компоненты выражаются через три функции — составляющие перемещения точки тела: симметричные соотношения Коши). Шесть уравнений совместности деформаций и уравнения обобщённого закона Гука замыкают задачу теории упругости.

Подходы к постановке задачи:

  1. Постановка задач теории упругости в перемещениях

  2. Постановка задач теории упругости в напряжениях

  3. Постановка задач теории упругости в смешанном виде

Теории пластичности- раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряжённое состояние зависит только от пути нагружения в пространстве деформаций и не зависят от скорости этого нагружения. Учёт скорости нагружения возможен в рамках более общей теории вязкопластичности.

Теория пластичности металлов и полимеров нашла широкое применение в машиностроении, где часто приходится рассматривать деформацию деталей и заготовок за пределамиупругости, что позволяет выявить дополнительные прочностные ресурсы конструкции. В технологических процессах производства некоторых элементов конструкций предусмотрены специальные операции, позволяющие путём пластического деформирования повысить несущую способность деталей в пределах упругости. Теория пластичности грунтов и горных пород применяется в геологии, а также в проектировании сооружений.

Варианты теорий пластичности:

А) Деформационная теория пластичности- активно развивалась академиком А. А. Ильюшиным. В рамках деформационной теории пластичности тело идеализируется как нелинейно упругое. В частности, для заданного деформированного состояния напряжённое состояние не зависит от конкретного пути нагружения в пространстве деформаций.

Достоинства теории заключаются в её простоте и возможности предсказания максимальных усилий в условиях монотонного пропорционального нагружения.

Недостатки теории заключаются в её неприменимости в случае смены знака нагружения а также в случае сложного нагружения. Теория не пригодна для описания следующих феноменов:

— эффект гистерезиса;

— локализация деформаций (в частности, шейкообразование);

— эффект Баушингера;

— остаточные напряжения;

— распружинивание.

Б) Теории типа течения- в рамках теорий типа течения тензор деформаций разделяется на упругую и пластическую составляющие. При этом напряжения описываются однозначной функией упругих деформаций, а приращения пластических деформаций или скоростей пластических деформаций зависят от напряжений. При формулировке определяющих соотношений существует большая свобода выбора между различными подходами.

Достоинства теории типа течения заключаются в её универсальности. Некоторые модели пластичности, построенные в рамках этой теории, пригодны для адекватного описания следующих феноменов:

— эффект гистерезиса;

— эффект Баушингера;

— остаточные напряжения;

— распружинивание.

В) Теория пластичности скольжения- по мнению некоторых исследователей, эта теория имеет ряд существенных преимуществ по сравнению с «классическими» теориями пластичности. Так, экспериментальное определение поверхности текучести требует точной фиксации момента возникновения пластической деформации, что в действительности невозможно осуществить.

Поэтому при построении теории пластичности естественнее исходить не из условия пластичности (поверхности текучести), а из зависимостей между напряжениями и деформациями, которые даёт эксперимент