Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка 4 семестр заочники.doc
Скачиваний:
133
Добавлен:
27.03.2014
Размер:
3.6 Mб
Скачать

Упражнения для самостоятельной работы

48. Найти значение функции в указанной точке, записав число в алгебраической форме.

а) ,;

б) ,;

в) ,;

г) ,.

49. Найти значения степеней:

а) ; б); в).

50. Решить уравнение .

51. Доказать тождество: ;;.

52. При отображении найти:

а) образ линии ;

б) образ области ,.

53. При отображении найти:

а) образы прямых, параллельных действительной оси;

б) образ прямоугольника: .

54. Найти область , в которую преобразуется область:,,при помощи функции.

4. Производная функции комплексного переменного. Условия дифференцируемости. Аналитические функции. Понятие о конформном отображении

Пусть однозначная функция определена в некоторой областии пусть точкиипринадлежат области.

Определение. Если существует конечный предел отношения , когдапо любому закону стремится к нулю, то:

  1. этот предел называется производной функции в точке и обозначается символом

; (4.1)

2) в этом случае функция называетсядифференцируемой в точке .

Все правила и формулы дифференцирования функции действительного переменного остаются в силе и для функций комплексного переменного.

Теорема. Для того, чтобы функция была дифференцируема в точке, необходимо и достаточно, чтобы:

1) действительные функции ибыли дифференцируемы в точке) ;

  1. в этой точке выполнялись условия

, (4.2)

называемые условиями Коши-Римана (C.-R.) или Даламбера-Эйлера.

При выполнении условий (C.-R.) производная функции может быть найдена по одной из следующих формул:

(4.3)

Приведем два определения, имеющих фундаментальное значение в теории функции комплексного переменного.

Определение. Функция называется аналитической в области, если она дифференцируема в каждой точке этой области.

Определение. Функция называется аналитической в точке , если она является аналитической в некоторой окрестности точки, т.е. если функция дифференцируема не только в данной точке, но и в ее окрестности.

Из приведенных определений видно, что понятия аналитичности и дифференцируемости функции в области совпадают, а аналитичность функции в точке и дифференцируемость в точке – разные понятия. Если функция аналитична в точке, то она, безусловно, дифференцируема в ней, но обратное может и не иметь места. Функция может быть дифференцируема в точке, но не быть дифференцируемой ни в какой окрестности этой точки, в таком случае она не будет аналитической в рассматриваемой точке.

Условием аналитичности функции в области является выполнимость условий Коши–Римана для всех точек этой области.

Связь аналитических функций с гармоническими. Любая ли функция двух переменных иможет служить действительной и мнимой частью некоторой аналитической функции?

Если функция аналитическая в области, то функциииявляются гармоническими, т.е удовлетворяют уравнению Лапласа.

и .

Однако если функции иявляются произвольно выбранными гармоническими функциями, то функция, вообще говоря, не будет аналитической, т.е. условиядля них не всегда будут выполняться.

Можно построить аналитическую функцию по одной заданной гармонической функции (например,), подобрав другуютак, чтобы удовлетворялись условия. Условия(4.2) позволяют определить неизвестную функцию (например,) по ее двум частным производным или, что то же самое, по ее полному дифференциалу. Отыскивание гармонической функции по ее дифференциалу есть известная из действительного анализа задача интегрирования полного дифференциала функции двух переменных.

Геометрический смысл модуля и аргумента производной. Пусть функция дифференцируема в областии. Функция отобразит точкуплоскостив точкуплоскости, кривую, проходящую через точкув кривую, проходящую через(рис.4.1).

Модуль производной есть предел отношения бесконечно малого расстояния между отображенными точкамиик бесконечно малому расстоянию между их прообразамии. Поэтому величинуможно рассматривать геометрически как коэффициент растяжения (если) в точкепри отображении областив области, осуществляемом функцией

Рис. 4.1

В каждой точке области в каждом направлении коэффициент растяжения будет свой. Для аргумента производной можно записать

,

где иэто соответственно углыи, которые векторыиобразуют с действительной осью (рис.4.1). Пустьиуглы, образованные касательными к кривойив точкахис действительной осью. Тогда при, а, поэтомуопределяет угол, на который нужно повернуть касательную к кривойв точке, чтобы получить направление к касательной к кривойв точке.

Если рассмотреть две кривые и,и, то углыи(рис. 4.1) между их касательными, вообще говоря, неравные.

Определение. Отображение области на область, обладающее свойствами постоянства растяжений () в любом направлении и сохранения (или консерватизма) угловмежду двумя кривыми, пересекающимися в точке, называетсяконформным (подобным в малом). Отображение, осуществляемое аналитической функцией, является конформным во всех точках, в которых .