Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
22222.doc
Скачиваний:
5
Добавлен:
15.04.2019
Размер:
4.38 Mб
Скачать

Предел функции по Гейне

Значение называется пределом (предельным значением) функции в точке , если для любой последовательности точек , сходящейся к , но не содержащей в качестве одного из своих элементов (то есть в проколотой окрестности ), последовательность значений функции сходится к .

Предел функции по Коши

Значение называется пределом (предельным значением) функции в точке , если для любого наперёд взятого положительного числа ε найдётся отвечающее ему положительное число такое, что для всех аргументов , удовлетворяющих условию , выполняется неравенство .

Теорема (единственность предела) Если функция f в точке а имеет предел, то этот предел единственный.

Доказательство: метод от противного limx→af(x)=b,limx→af(x)=c,b/=c . Возьмем ε=∣b−c∣ , по определению и свойству окрестности найдется выколотая окрестность т. а Uo(a,δ), в которой одновременно будут выполняться неравенства ∣f(x)−b∣<2∣b−c∣∣f(x)−c∣<2∣b−c∣ , тогда в точках этой же окрестности ∣b−c∣=∣(b−f(x))+(f(x)+c)∣≤∣f(x)−b∣+∣f(x)−c∣<2∣b−c∣+2∣b−c∣=∣b−c∣ противоречие (от

9. Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю. Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

Бесконечно малая величина

Последовательность an называется бесконечно малой, если . Например, последовательность чисел  — бесконечно малая.

Функция называется бесконечно малой в окрестности точки x0, если .

Функция называется бесконечно малой на бесконечности, если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f(x) − a = α(x), .

Бесконечно большая величина

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция xsin x, неограниченная с обеих сторон, не является бесконечно большой при .

Последовательность an называется бесконечно большой, если .

Функция называется бесконечно большой в окрестности точки x0, если .

Функция называется бесконечно большой на бесконечности, если либо .

Свойства бесконечно малых

  • Сумма конечного числа бесконечно малых — бесконечно малая.

  • Произведение бесконечно малых — бесконечно малая.

  • Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.

  • Если an — бесконечно малая последовательность, сохраняющая знак, то — бесконечно большая последовательность.

Допустим, у нас есть бесконечно малые при одном и том же величины α(x) и β(x) (либо, что не важно для определения, бесконечно малые последовательности).

  • Если , то β — бесконечно малая высшего порядка малости, чем α. Обозначают β = o(α).

  • Если , то β — бесконечно малая низшего порядка малости, чем α. Соответственно α = o(β).

  • Если (предел конечен и не равен 0), то α и β являются бесконечно малыми величинами одного порядка малости.

Это обозначается как β = O(α) или α = O(β) (в силу симметричности данного отношения).

  • Если (предел конечен и не равен 0), то бесконечно малая величина β имеет m-й порядок малости относительно бесконечно малой α.

Для вычисления подобных пределов удобно использовать правило Лопиталя.

Если , то бесконечно малые величины α и β называются эквивалентными ( ).

Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

При справедливы следующие соотношения эквивалентности (как следствия из так называемых замечательных пределов):

, где a > 0;

, где a > 0;

, поэтому используют выражение:

, где .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]