Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб. Механика и мол. физика.doc
Скачиваний:
23
Добавлен:
16.03.2016
Размер:
1.35 Mб
Скачать

Теория метода и описание установки

Одним из экспериментальных методов определения моментов инерции тел является метод крутильных колебаний. Этим методом можно определить момент инерции любого тела, имеющего не только правильную, но и неправильную форму, момент инерции которого рассчитать трудно (зубчатое колесо с отверстиями, отливка и др.).

Крутильные колебания возникают, если тело, подвешенное на упругой проволоке (рис. 3.1), повернуть на некоторый угол и отпустить. В проволоке появляются упругие силы, направленные в сторону, противоположную углу поворота. Возникает момент сил, пропорциональный углу поворота и стремящийся вернуть тело в положение равновесия:

M = – k ,

(3.1)

где – коэффициент упругости подвеса.

Если пренебречь силами трения, то из основного закона динамики вращения (см. выражение (2.5) в лабораторной работе № 2) будем иметь

I = – k ,

(3.2)

где I – момент инерции висящего на проволоке тела относительно оси крутильных колебаний.

Так как величина возвращающего момента сил прямо пропорциональна смещению  от положения равновесия, то возникающие крутильные колебания будут гармоническими и угол поворота (t) будет периодической функцией времени:

 =  m cos ( t + 0),

(3.3)

где m – амплитуда колебаний, т.е. максимальное значение угла поворота ;  – циклическая частота колебаний, связанная с периодом T соотношением

;

(3.4)

0 – начальная фаза колебаний.

Угловое ускорение тела, как известно, может быть определено как вторая производная от угла поворота по времени:

.

(3.5)

Произведя двойное дифференцирование выражения (3.3) и подставив значения  и  в (3.2), можно получить связь между угловой частотой крутильных колебаний тела и коэффициентом упругости подвеса:

.

(3.6)

Заменив в этом уравнении  через период колебаний T и измерив его, можно определить момент инерции подвешенного тела, если известен коэффициент упругости k:

.

(3.7)

Если же значение коэффициента упругости проволоки неизвестно, то его можно исключить, написав аналогичное уравнение для другого тела – правильной формы, момент инерции I0 которого легко рассчитать:

.

(3.8)

Здесь k имеет то же значение, что и в выражении (3.6), если тело с неизвестным моментом инерции I подвешено на том же подвесе.

Приравнивая правые части выражений (3.6) и (3.8), легко получить уравнение, дающее возможность найти момент инерции тела любой формы по рассчитанному значению I0 и двум периодам колебаний T0 и T, которые определяются измерениями. В качестве тела с известным моментом инерции в нашей работе взято кольцо, момент инерции которого рассчитывается по его массе т и размерам:

,

(3.9)

где R1 – внутренний радиус, а R2 – внешний радиус кольца.

Расчётное значение момента инерции кольца (3.9) получено интегрированием выражения, которое определяет момент инерции сплошного тела

.

(3.10)

В случае кольца элемент массы dm выбирается в виде бесконечно тонкого колечка произвольного радиуса r (рис. 3.2), и интегрирование ведётся в пределах от R1 до R2. Масса элемента dm прямо пропорциональна объёму dV колечка и плотности  материала, из которого изготовлено кольцо:

dm =  (2rdrb),

(3.11)

где b – толщина кольца. Подставляя в (3.10) это выражение, получаем

.

(3.12)

После несложных преобразований, выделив здесь массу кольца как произведение его объёма на плотность, получим формулу (3.9).

Установка для проведения измерений представляет собой стойку с кронштейном, на котором закреплена стальная проволока длиной около метра. К нижнему концу проволоки прикреплена лёгкая платформа, моментом инерции которой пренебрегаем, так как он очень мал по сравнению с инертностью эталонных колец и исследуемого тела. На платформе симметрично относительно оси проволоки могут размещаться либо тело произвольной формы, либо кольца разных размеров. Для фиксации положения тела в симметричном положении по проволоке можно перемещать лёгкую пробку. В основание стойки ввёрнуто три винта, с помощью которых стойка устанавливается вертикально – так, чтобы проволока с подвешенным к ней грузом была параллельна стойке.