Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_teor meh.doc
Скачиваний:
1089
Добавлен:
01.03.2016
Размер:
2.54 Mб
Скачать

18 Вопрос

Заделка одного тела в другое (например стержня в неподвижную стену) не позволяет данному телу перемещаться и поворачиваться относительно другого. В случае заделки силовая реакция RA не является единственным фактором взаимодействия между телом и опорой. Кроме этой силы реакцию заделки определяет также пара сил с неизвестным заранее моментом MA. Если силу RA представить ее составляющими XAYA, то для нахождения реакции заделки надо определить три неизвестные скалярные величины: XA, YA, MA.

Приведем примеры замены плоских систем параллельных распределенных сил их равнодействующими.

  1. Силы, равномерно распределенные вдоль отрезка прямой.

Для такой системы сил интенсивность имеет постоянное значение: q = const.

При решении задач статики эту систему сил можно заменять сосредоточенной равнодействующей силой Q, равной по модулю произведению интенсивности q на длину отрезка AB = a ( Q = q · a) и приложенной в середине отрезка AB.

  1. Силы, распределенные вдоль отрезка прямой по линейному закону.

Для такой системы сил интенсивность q является переменной величиной, изменяющейся от нуля до максимального значения qmax по линейному закону.

Равнодействующая Q этой системы сил равна по модулю Q =0.5 · a · qmax и приложена в точке K, делящей отрезок AB в отношении AK : KB = 2 : 1.

19.Расчет составных конструкций 1.1. Расчет с разделением системы тел на отдельные тела 1.1.1. Систему тел по внутренней связи С разделяют на отдельные тела и рассматривают их равновесие. 1.1.2. От каждого из тел отбрасывают все связи, заменяя их действие реакциями [1, 2]. В заданных механизмах приложены следующие виды связей: неподвижный осевой шарнир (реакцию разлагают на составляющие, параллельные координатным осям X, Y ); подвижныйосевой шарнир (реакция N перпендикулярна опорной поверхности, направлена от нее); жесткая заделка (реакция представляет собой комбинацию реакции неподвижного шарнираX, Y и пары сил с реактивным моментом m ).Составляющие реакции внутреннего шарнира С , приложенные к разным телам системы, по принципу действия и противодействия равны по модулю и направлены противоположно. Распределенную нагрузку заменяют сосредоточенной силой, приложенной посредине интервала и равной модулю произведения интенсивности нагрузки q на длину интервала. 1.1.3. Составляют уравнения равновесия, включающие уравнения проекций на стандартные оси и уравнения моментов (расчетное и проверочное). Центр расчетного уравнения моментов выбирают на пересечении линий действия максимального количества неизвестных реакций, проверочного уравнения – на пересечении линий действия известных сил, через которое не проходит ни одна из непроверенных неизвестных реакций. Рекомендуется уравнения равновесия составлять, рассматривая силы по очереди следующим образом: определяют угол острый α между линией силы и линией одной из осей; проекция силы на эту ось будет содержатьcos α, на вторую ось –sin α; проекция положительна, если угол совмещения вектора силы с осью острый, и отрицательна – если он тупой; определяют плечо силы, опуская перпендикуляр из центра на линию действия силы, и знак момента по направлению поворота плеча силой вокруг центра (при повороте плеча по часовой стрелке момент отрицателен, против - положителен). При произвольном положении силы для определения момента ее разлагают на составляющие, параллельные координатным осям (их величины равны соответствующим проекциям силы) и находят сумму моментов этих составляющих, используя теорему Вариньона [1, 2]. Таким образом, для каждого из тел составляют по 3 расчетных и 1 проверочное уравнение. 1.1.4. Решают систему из 6 расчетных уравнений относительно неизвестных реакций. Подставляют найденные реакции в проверочные уравнения, модуль полученной суммы не должен превышать 0,02 Rср, гдеRср – среднее значение модулей проверяемых реакций. 1.2. Расчет с использованием принципа отвердевания 1.2.1. Заменяют внутренний шарнир С жестким соединением и рассматривают равновесие полученного тела. Вторым рассматривают одно из тел системы (п.1.1.1). 1.2.2. Составляют чертеж для каждого из рассматриваемых тел аналогично п.1.1.2. 1.2.3. Для первого тела составляют 3 расчетные и 1 проверочное уравнение аналогично п.1.1.3. Для второго тела составляют одно расчетное уравнение моментов сил относительно центра С. 1.2.4.Решают систему из 4 расчетных уравнений и делают проверку аналогично п.1.1.4. 2.

2.Расчет с помощью принципа возможных перемещений.Реакции связей определяют, рассматривая их по очереди.

20.Условие равновесия рычага.Устойчивость тел при опрокидывании.Расстояние от точки опоры до прямой, вдоль которой действует сила, называют плечом этой силы. Обозначим F1 и F2 силы, действующие на рычаг со стороны грузов (см. схемы в правой части рис. 25.2). Плечи этих сил обозначим соответственно l1 и l2. Наши опыты показали, что рычаг находится в равновесии, если приложенные к рычагу силы F1 и F2 стремятся вращать его в противоположных направлениях, причем модули сил обратно пропорциональны плечам этих сил: F1/F2 = l2/l1.Устойчивость тел при опрокидывании. Это задачи, возникающие при конструировании различных грузоподъемных механизмов и при расчете безопасных условий их эксплуатации, оговариваемых в правилах по работе с этими механизмами. Особенностью решения этих не очень сложных задач на плоскую систему сил является то, что при их решении не составляются уравнения равновесия. Отдельно определяются:а) опрокидывающий момент ( Мопр )- сумма моментов сил, которые стремятся опрокинуть рассматриваемый механизм относительно некоторой проектирующейся на чертеже в точку оси (точки опоры); в) удерживающий момент ( Муд )- сумма моментов сил, препятствующих опрокидыванию. Для устойчивой работы механизма необходимо, чтобы удерживающий момент с некоторым запасом был больше опрокидывающего. Отношение Муд ,/ Мопр =k принято называть коэффициентом устойчивости. Величина k должна быть, естественно, больше единицы. Для различных грузоподъемных механизмов и для разных условий их работы величина коэффициента устойчивости определяется из СНиП, ТУ и других источников. С учетом этого коэффициента приводятся расчеты величины груза противовеса или его положения на механизме, просчитываются варианты - при каком вылете стрелы и с какими грузами можно безопасно работать. Пример решения одной из задач на устойчивость приведен ниже. Особенно важно уметь выполнять элементарные расчеты на устойчивость в производственных условиях, когда приходится работать с предельными для имеющегося в распоряжении крана грузами.

21 Трение скольжения. Законы трения. Коэффициент трения.Между движущимися телами в плоскости их соприкосновения возникает сила трения скольжения. Обусловлено это прежде всего шероховатостью соприкасающихся поверхностей и наличием сцепления у прижатых тел.В инженерных расчетах обычно пользуются установленными опытным путем закономерностями, которые с некоторой степенью точности отражают действие силы трения. Эти закономерности называют законами трения скольжения (Кулона). Их можно сформулировать следующим образом. 1. При стремлении сдвинуть одно тело относительно другого в плоскости их соприкосновения возникает сила трения F , модуль которой может принимать любые значения от нуля до Fmax, т. е.0<=F<=Fmax . Сила трения приложена к телу и направлена в сторону, противоположную возможному направлению скорости точки приложения силы. 2. Максимальная сила трения равна произведению коэффициента трения f на силу нормального давления N: Fmax=fN. Коэффициент трения f — безразмерная величина, зависящая от материалов и состояния поверхностей соприкасающихся тел (шероховатость, температура, влажность и т. п.). Определяют его опытным путем. Различают коэффициенты трения покоя и трения скольжения, причем последний, как правило, зависит и от скорости скольжения. Коэффициент трения покоя соответствует такоймаксимальной силе трения Fmax, при которой имеется предельное состояние равновесия. Малейшее увеличение внешних сил может вызвать движение. Коэффициент трения покоя, как правило, немного больше коэффициента трения скольжения. С увеличением скорости скольжения значение коэффициента трения скольжения сначала незначительно уменьшается, а затем остается практически неизменным. Значения коэффициентов трения для некоторых пар трения следующие: дерево по дереву 0,4-0,7; металл по металлу 0,15-0,25; сталь по льду 0,027. 3. Максимальная сила трения в довольно широких пределах не зависит от площади соприкасающихся поверхностей. Силу трения скольжения иногда называют силой сухого трения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]