Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shpory_po_teor meh.doc
Скачиваний:
1089
Добавлен:
01.03.2016
Размер:
2.54 Mб
Скачать

15.Приведение плоской системы сил к центру

Теорема о приведении системы сил:

Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R, равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом LO, равным главному моменту системы сил относительно центра О.

Такая эквивалентная замена данной системы сил силой R и парой сил с моментом LO называютприведением системы сил к центу О.

Рассмотрим здесь частный случай приведения плоской системы сил к центру О, лежащему в той же плоскости. В этом случае система сил заменяется одной силой и одной парой сил, лежащих в плоскости действия сил системы. Момент этой пары сил можно рассматривать как алгебраическую величину LO и изображать на рисунках дуговой стрелкой ( алгебраический главный момент плоской системы сил ).

В результате приведения плоской системы сил к центру возможны следующие случаи:

  1. если R = 0, LO = 0, то заданная система является равновесной;

  2. если хотя бы одна из величин R или LO не равна нулю, то система сил не находится в равновесии.  При этом:

  • Eсли R = 0 и LO 0, то система сил приводится к одной паре сил с моментом LO, причем в этом случае величина момента LO не зависит от выбора центра О.

  • Eсли R 0, то при любом значении LO система сил приводится к равнодействующей силе.

16 Вопрос. Уравнение равновесия

Для равновесия твердрго тела, находящегося под действием плоской системы сил,необходимо и достаточно, чтобы главный вектор этой системы сил и ее алгебраический главный момент были равны нулю, то есть R = 0, LO = 0, где О - любой центр, расположенный в плоскости действия сил системы.

Вытекающие отсюда аналитические условия равновесия (уравнения равновесия) плоской системы сил можно сформулировать в следующих трех формах:

  1. Основная форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы проекций всех сил на каждую из координатных осей и сумма их алгебраических моментов относительно любого центра, лежащего в плоскости действия сил, были равны нулю:

 Fix = 0;  Fiy = 0;  MO(Fi) = 0. (I)

  1. Вторая форма уравнений равновесия:

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно двух центров А и В и сумма их проекций на ось Ox, не перпендикулярную оси Ox, были равны нулю:

 Fix = 0;  MА(Fi) = 0;  MВ(Fi) = 0. (II)

  1. Третья форма уравнений равновесия (уравнения трех моментов):

для равновесия произвольной плоской системы сил необходимо и достаточно, чтобы суммы алгебраических моментов всех сил относительно любых трех центров А,В и С, не лежащих на одной прямой, были равны нулю:

 MА(Fi) = 0;  MВ(Fi) = 0;  MС(Fi) = 0. (III)

Уравнения равновесия в форме (I) считаются основными, так как при их использовании нет никаких ограничений на выбор координатных осей и центра моментов.

17 Вопрос

Теорема Вариньона. Если рассматриваемая плоская система сил приводится к равнодействующей, то момент этой равнодействующей относительно какой-либо точки равен алгебраической сумме моментов всех сил данной системы относительно той оке самой точки.Предположим, что система сил приводится к равнодействующей R, проходящей через точку О. Возьмем теперь в качестве центра при­ведения другую точку O1. Главный момент (5.5) относительно этой точки равен сумме моментов всех сил: MO1Z=åMo1z(Fk)   (5.11). С другой стороны, имеем MO1Z=MOlz(R), (5.12) так как главный момент для центра приведения О равен нулю (MOz=0). Сравнивая соотношения (5.11) и (5.12), получаем MO1z(R)=åMOlZ(Fk); (5.13) ч.т.д. При помощи теоремы Вариньона можно найти уравнение линии действия равнодействующей. Пусть равнодействующая R1 приложена в какой-либо точке О1 с координатами х и у (рис. 5.5) и известны главный вектор Fo и главный момент МОя при центре приведения в начале координат. Так как R1=Fo, то составляющие равнодей­ствующей по осям х и у равны Rlx=FOx=FOxi и Rly=FOy=Foyj. Согласно теореме Вариньона мо­мент равнодействующей относительно на­чала координат равен главному моменту при центре приведения в начале коорди­нат, т. е. Моz=MOz(R1)=xFOy–yFOx. (5.14). Величины MOz, FOx и Foy при переносе точки приложения равнодействующей вдоль ее линии действия не изменяются, следовательно, на координаты х и ув уравнении (5.14) можно смотреть как на текущие координаты ли­нии действия равнодействующей. Таким образом, уравнение (5.14) есть уравнение линии действия равнодействующей. При Fox≠0 его можно переписать в виде y=(Foy/Fox)x–(Moz/Fox).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]