Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[ВМ] Теории ФКП.pdf
Скачиваний:
12
Добавлен:
31.05.2015
Размер:
2.63 Mб
Скачать

т.е. получили разложение функции f (z)в ряд Тейлора в круге

z a < r . Единственность этого разложения есть следствие утвер-

ждения, что любой степенной ряд есть ряд Тейлора своей суммы, ибо отсюда следует, что найденное любым способом разложение аналитической функции f(z) в степенной ряд является рядом Тейло-

ра этой функции, что и требовалось доказать.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Можно доказать, что наибольший радиус r круга с центром в

точке z = a , в которой функция f(z) разлагается в ряд

ейлора, ра-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

вен расстоянию от точки z = a до ближайшей к ней особой точки, в

которой эта функция не является аналитической.

 

 

 

 

Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Так как ряд Тейлора и формулы дифференцирования для функ-

ции КП имеют тот же вид, что и для функции действительного пе-

ременного, ряды Тейлора для функций комплексногоНпеременного

не отличаются по виду от рядов Тейлора для тех же функций дей-

ствительного переменного. Ряды Тейлора для

Бфункций ez, cos z, sin

z, ln z, (1+z)m имеют следующий в д:

йn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

z

2

 

 

 

 

z

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ez

=1+

 

 

+

 

 

 

 

+

 

+...+

z

 

 

+...;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1!

 

 

 

2!

 

 

 

и3! n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

3

 

 

 

z

5

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

n

 

 

 

z

2n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

рz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin z

= z

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

+...+

(1)

 

 

 

 

 

 

 

 

 

 

+... ;

 

 

 

 

 

 

 

 

3!

5!

7!

 

 

(2n

+1)!

 

 

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

4

 

 

 

 

z

6

 

 

 

 

 

 

 

n

 

 

 

z

2n

 

 

 

 

 

 

 

 

 

 

 

 

 

тz z

 

 

 

 

 

 

 

 

+(1)

 

 

 

 

 

+... ;

 

 

 

 

 

 

 

 

cos z =1

 

 

 

+

 

 

 

 

 

 

 

 

 

+...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

4!

 

6!

 

 

(2n)!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

m

 

m(m 1)

 

 

2

 

 

 

 

 

 

 

m(m 1)...(m n +1)

 

n

 

 

;

 

(1+ z)

 

з

 

 

 

 

2!

 

 

 

 

 

z

 

 

 

+

...+

 

 

 

 

 

 

n!

 

 

 

z

 

+...

 

 

=1+

1! z +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

(z 1)2

 

 

(z 1)3

 

 

 

(z 1)4

 

 

 

 

 

 

 

 

 

 

 

 

(z 1)n

 

 

 

ln z = (z 1)

+

+...+(1)n1

+... ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

гдеа = 1.

 

 

2

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

Р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§ 12. РЯД ЛОРАНА ФКП

Рядами Тейлора представляются аналитические функции в круговых областях. Однако часто приходится рассматривать функции,

41

аналитические всюду в некоторой окрестности точки a, исключая саму точку а, т.е. аналитические в кольце вида 0 < z a < R .

Такие функции представляются двусторонними рядами, содержащими как целые положительные, так и целые отрицательные

степени z a вида

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cn (z a)n = cn (z

a)n +

 

 

 

 

 

.

 

 

 

 

 

 

(31)

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

n=−∞

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=1 (z a)

 

 

 

 

 

 

 

 

 

 

 

Слагаемые в правой части (31) называются соответственноТпра-

вильной и главной частью ряда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Первый ряд справа – обычный степенной ряд, сходящийся в не-

 

 

 

 

 

 

 

 

 

 

 

 

 

п=1

 

 

 

 

 

заменой

1

 

 

 

 

 

 

 

 

 

 

 

котором круге

z a

 

< R . Второй ряд

 

 

 

 

 

 

 

= ξ преобразу-

 

 

z a < r,

 

 

 

z

a

 

 

r.

 

 

сходится

Бz a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ется в степенной ряд

спξп , который сходится в круге

ξ

< r.

От-

сюда

1

 

 

и

 

 

>

 

Ряд (31)

 

 

 

в кольце r <

 

z a

 

< R.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

т

рдится абсолютно, равномерно и его

В этой области ряд (31) сх

сумма есть аналитическая функция:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

з

 

 

 

 

 

 

 

(z a)n .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)= cn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(32)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

О ределим к эффициенты сn ряда (32). Для этого умножим р а-

е

о

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)

 

 

 

 

 

 

 

 

 

 

 

k n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в нство (32) на

(z a)n1 , получим

 

 

 

=

ck (z a)

 

 

 

 

..

(z a)

n+1

 

 

 

 

 

п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k =−∞

 

 

 

 

 

 

 

 

 

 

Р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Проинт грируем полученное выражение почленно по окружности

L:

z a

=ρ, r < ρ < R . Имеем следующее равенство:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)

 

 

 

 

 

 

 

 

 

k

n1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dz =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ck (z

a)

 

 

dz.

 

 

 

(33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L (z a)n+1

k =−∞ L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42

Вычислим теперь интеграл вида

 

 

 

m

 

 

 

2π

 

 

m

e

imϕ

iρe

iϕ

dϕ = iρ

m+12π i(m

+1)ϕ

dϕ =

 

 

 

(z a) dz

= ρ

 

 

 

 

 

 

e

 

 

 

 

L

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

У

 

 

 

 

 

 

 

 

 

m+1

 

 

(ei(m+1)2π 1)= 0, m ≠ −1;

 

 

 

 

 

 

 

 

iρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m +1

 

 

 

m = −1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πi,

 

 

 

 

 

 

 

 

 

 

 

 

 

Из равенства (33) имеем:

 

 

 

 

 

 

 

 

 

 

 

Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

L

 

 

dz = сп2πi ,

 

 

 

 

 

 

 

 

 

 

 

 

(z a)n+1

 

 

откуда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Б

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

сп =

 

1

 

 

 

 

 

 

f (z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

dz,

n = 0,

±1,... .

 

 

 

(34)

 

 

 

2π

(z a)n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

Ряд (32), коэффициен ы к т

 

го определяются формулой (34),

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

называется рядом Лорана функции f(z) в окрестности точки a.

 

Заметим, что сумма f(zо) двустороннего ряда (32) является анали-

тической функц ей

тв кольце его сходимости и этот ряд является

рядом Лорана, своей суммы.

 

 

 

 

 

 

 

 

 

 

 

 

 

Возникает в проси, всякую ли функцию f(z), аналитическую в не-

котор м круг в м кольце,

можно разложить в этом кольце в ряд

 

 

 

з

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Лорана? Ответ на этот вопрос дает следующая теорема.

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Т ор ма. Всякая функция f(z), аналитическая в круговом кольце

 

п

r <

 

z a

 

< R , может быть в этом кольце единственным

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

образом разложена в ряд Лорана (теорему принимаем без доказательства).

Правильная часть ряда Лорана есть степенной ряд, сходящийся в круге z a < R , в то время как главная часть ряда Лорана сходится

в области z a > r .

43

Пусть теперь функция f(z) аналитична не только в кольце 0 < z a < R , но и в точке z = a (в круге z a < R ). При всех отри-

цательных n подынтегральная функция в (34) не имеет особых точек внутри L. Следовательно, все с-n = 0, а главная часть ряда Лора-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f n (a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

на исчезает. В этом случае c

=

 

. Имеем ряд Тейлора. Значит,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ряд Тейлора является частным случаем ряда Лорана, когда f(z) ана-

литична в «кольце» 0

 

z a

 

R .

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Точки плоскости z , в которых функция

f (z) не является анали-

тической, называются особыми точками этой функции.

 

Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 1

 

 

 

 

 

Б

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Разложить функцию

 

f (z) =

 

 

 

 

1

 

 

в ряд Лорана.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z(1z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Функция

 

f

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(z) имеет две особые точки z = 0 и z =1,

в силу ч его имеются два

круговых

«йкольца» с центром в точке

 

a = 0 ,

в

 

которых

 

f (z)

аналит чна

 

это

 

кольца

1) 0 <

 

z

 

<1 и

 

 

 

 

 

2)

 

z

 

 

>1.

 

z

 

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

<

 

 

<1. Тогда разл жим данную функцию на сумму про-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

стейших дробей:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

з

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

(z) =

1

+

 

1

 

= 1 +(1+ z + z

2 +...+ zn +...) = zn .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

и1z z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=−1

 

 

 

 

 

 

 

 

 

 

 

 

Главная часть п лученного ряда Лорана состоит из одного члена 1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

Зд сь мы рассматривали вторую дробь как сумму геометрической

прогрпссии со знаменателем q = z ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

е2)

 

 

>

 

 

. Дробь

 

1

 

 

 

аналитична вне круга или для

1

 

 

 

 

 

Тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р1

 

 

 

 

z

 

1

 

 

 

 

 

 

 

1z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

<1.

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

1

 

 

 

 

1

 

 

 

 

 

1

1

 

 

 

1

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

= −

 

 

1+

 

 

+...+

 

 

 

+...

 

= −

 

 

 

 

...

 

 

 

... = −

 

 

.

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

n

 

 

2

 

 

n+1

 

 

n

1z

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

z

 

 

 

 

z

 

 

 

 

 

 

z

 

z

 

 

 

z

 

 

 

 

 

 

 

 

n=1 z

 

 

 

 

 

 

 

 

 

 

z

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Следовательно,

 

 

 

 

f (z)=

 

 

− −

 

 

= −

 

. Здесь

отсут-

 

 

 

 

z

z

 

2

 

 

n+1

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

n=2

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ствует правильная часть.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Разложить функцию

 

 

 

в ряд Лорана, взяв a = 0;

 

z

>

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.

 

 

 

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

т.к.

>1, то

 

 

<1

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

2 1

 

 

2

 

 

 

1

 

 

 

 

 

z2

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

Б

 

Т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

=

 

 

 

 

 

1+

 

 

 

+

 

 

 

+

 

 

+...

+

 

 

 

 

 

 

+

...

 

=

 

 

 

 

 

+

 

 

 

 

 

+

 

 

 

 

 

 

 

+

 

 

 

 

+Н...+

+... =

 

 

 

 

z2

 

 

 

 

z2

 

1

 

 

 

 

 

z6

 

 

 

 

 

 

z2п

 

 

 

 

 

 

z2

й

 

 

z8

 

 

 

 

 

z2п+2

1

 

 

 

 

 

 

 

 

 

 

 

 

z4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

4

 

 

 

 

 

 

z6

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

п=1 z2п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

прогрессии с q =

 

 

 

 

 

 

 

Здесь

 

 

 

 

 

 

 

 

 

сумма

геомет

 

 

 

ческой

 

;

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

о

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

т

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

<1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

и

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

з

 

 

 

 

 

 

 

 

Пример 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)=

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Разл жить функцию

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

в кольце 1<

 

 

< 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

п

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(z 1)(z 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ре

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(z)=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

Cn

(z a)n .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ш ние. Всякую аналитическую функцию можно разложить в

ряд Лорана:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Заданная функция имеет две особые точки

z =1, z = 3, следова-

тельно, является аналитической в кольце 1<

 

z

 

< 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

45

Представим f (z) в виде суммы двух функций:

1

 

=

1

 

1

1

 

1

 

=

1

(f (z)f

 

(z));

(z 1)(z 3)

2

z 3

2

z 1

2

 

 

 

 

 

 

1

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

У

 

f (z)=

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

 

 

= −1

 

 

 

 

 

 

z

 

 

 

 

z

2

 

 

 

z

3

 

 

 

 

 

 

 

 

 

 

z

n

 

 

 

 

 

= −

 

 

 

 

 

 

= −

 

 

 

 

 

 

 

 

 

1+

 

+

 

 

+

 

 

 

 

+....

= −

 

 

 

 

 

,

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

Т

 

 

 

z 3

 

 

 

 

3 z

 

 

 

 

 

 

3

 

 

 

 

 

z

 

 

 

 

 

 

3

 

 

 

 

3

 

 

 

3

 

 

 

 

3

 

 

 

 

 

 

 

 

 

n=0 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Н

 

 

 

 

 

 

функция аналитична в круге

 

 

z

 

< 3;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f2 (z)=

1

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

1+

 

 

+

 

 

 

 

 

+

 

 

 

 

+...

 

=

 

 

 

 

 

,

 

функ-

 

 

z

1

 

 

 

 

 

 

 

 

1

 

 

z

z

 

z

2

 

z

3

 

z

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 1

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

и

 

 

 

 

Б

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ция аналитична в области

z

>1.

 

 

 

 

 

 

 

 

 

 

 

й

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

Пример4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)= −

1

 

 

 

 

 

z

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Тогда

 

 

 

 

 

 

 

 

 

 

 

 

 

; 1

<

z

<

3 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

о

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

=0 3

n+1

 

 

 

 

 

n=0

z

n+1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

иz

 

 

 

 

 

 

ez

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Разложить функц

тю f (z)=

 

 

в окрестности точки 0.

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

тся дляособойнее

.

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение.зf (z)=

 

 

 

e

 

 

 

= ϕ(z) Ψ(z).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

п

ϕ(z)

уже разложена по степеням

 

 

z ,

точка

 

 

z = 0

 

явля-

 

Функция

 

 

 

 

 

е

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Р

 

 

 

 

 

 

Ψ(z)= ez

 

 

 

 

 

 

 

 

 

 

 

 

z

 

2

 

 

 

z

3

 

 

 

 

 

 

 

 

 

 

 

z

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=1+ z +

 

 

+

 

 

 

 

+...

= ∑

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

3!

 

 

 

 

 

 

 

 

 

n=0

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (z)=

1

 

 

ez =

 

1

 

 

zn

 

 

 

 

 

 

 

 

zn2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= ∑

 

 

 

 

 

 

 

 

, 0 <

z

< ∞.

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

z2

 

 

 

n!

 

 

 

 

 

n!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n=0

 

 

 

 

 

n=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46