Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_gigiena_1.docx
Скачиваний:
215
Добавлен:
20.05.2015
Размер:
2.42 Mб
Скачать

4.4. Инфракрасная радиация, влияние на организм

Инфракрасная радиация занимает в лучистом спектре интервал от 760 до 2800 нм и оказывает тепловой эффект.

Инфракрасный спектр обычно делят на коротковолновое излучение с длиной волны 760-1400 нм и длинноволновое с длиной волны более 1400 нм.

Такое деление связано с их различным биологическим действием.

Длинноволновые инфракрасные лучи имеют меньшую энергию, чем коротковолновые, обладают меньшей проникающей способностью, а поэтому полностью поглощаются в поверхностном слое кожи, нагревая ее. Непосредственно вслед за интенсивным нагреванием кожи возникает тепловая эритема, которая проявляется в покраснении кожи вследствие расширения капилляров.

Коротковолновые инфракрасные лучи, обладая большей энергией, способны глубоко проникать, а поэтому им больше присуще общее действие на организм. Например, в результате рефлекторного расширения как кожных, так и более крупных кровеносных сосудов увеличивается приток крови к периферии, происходит перераспределение массы крови в организме. В результате повышается температура тела, учащается пульс, учащается дыхание, усиливается выделительная функция почек.

Коротковолновые инфракрасные лучи являются хорошим болеутоляющим фактором, способствуют быстрому рассасыванию воспалительных очагов. На этом основано широкое использование этих лучей для указанных целей в физиотерапевтической практике.

Коротковолновая инфракрасная радиация может проникать через кости черепа, вызывая эритематозное воспаление мозговых оболочек (солнечный удар).

Начальная стадия солнечного удара характеризуется головными болями, головокружением, возбужденным состоянием. Затем наступают потеря сознания, конвульсивные судороги, расстройства со стороны дыхания и сердца. В тяжелых случаях солнечный удар заканчивается смертью.

Солнечный удар - результат прямого воздействия солнечных лучей на тело человека, в основном на голову. Болезненные явления в первую очередь связаны с поражением ЦНС. Солнечный удар поражает тех, кто проводит много часов подряд под палящими лучами с непокрытой головой.

Тепловой удар возникает из-за перегревания организма. Он может случиться с тем, кто выполняет тяжелую физическую работу в жаркую душную погоду, совершает длительные переходы при сильной жаре, или просто находится в душном помещении.

Наиболее неблагоприятное воздействие ИК-излучения проявляется в производственных условиях, где его мощность может во много раз превышать уровень, возможный в естественных условиях. Отмечено, что у рабочих горячих цехов, стеклодувов, имеющих контакт с мощными потоками ИК-излучения, понижается электрическая чувствительность глаза, увеличивается скрытый период зрительной реакции и т. д. ИК-лучи при длительном воздействии вызывают и органические изменения органа зрения. ИК-излучение с длиной волны 1500-1700 нм достигает роговицы и передней камеры глаза; более короткие лучи с длиной волны до 1300 нм проникают до хрусталика; в тяжелых случаях возможно развитие тепловой катаракты. Одной из важнейших мер профилактики на этих производствах является использование защитных очков.

Видимая часть солнечного спектра определяет суточные биологические ритмы человека, до использования искусственного освещения продолжительность активной деятельности человека ограничивалась естественным фотопериодом (от восхода до захода солнца). Ориентирование человека на технические синхронизаторы (часы, радио, телевидение), искусственное освещение, начало и конец рабочей смены являются причиной рассогласования между географическими и социальными датчиками времени. Особенно это выражено в северных районах. Так, у 40 % людей, приезжающих на Крайний Север, регистрируется нарушение режима сна и бодрствования, причем у 3-5 % нормализации сна так и не происходит.

В зависимости от сезона года отмечается изменение суточных ритмов и у людей в средних широтах. Уменьшается продолжительность сна от зимы к лету. В зимний период вслед за уменьшением продолжительности дня происходит смещение на более поздние часы максимума суточной кривой температуры тела, некоторых биохимических показателей, физической работоспособности. Существование сезонных особенностей суточных ритмов необходимо учитывать при организации ночных смен на предприятиях,

при вахтовом методе работы, перелетах на большие расстояния со сменой часовых поясов и т. д.

Особое гигиеническое значение имеет влияние света на орган зрения. При низкой освещенности быстро наступает зрительное утомление, снижается общая работоспособность; во время трехчасовой зрительной работы при освещенности 30-50 лк устойчивость ясного видения снижается на 37 %, при освещенности 200 лк она снижается только на 10-15 %.

Правильно организованный световой режим играет существенную роль в профилактике близорукости у школьников.

Поэтому гигиеническое нормирование уровней освещенности устанавливается в соответствии с физиологическими особенностями зрительного анализатора.

Создание достаточного уровня естественного освещения в помещениях имеет большое значение для предупреждения "светового голодания". Для гигиенической оценки естественной освещенности помещений используется комплексный показатель - коэффициент естественной освещенности (КЕО). КЕО представляет собой процентное отношение горизонтальной естественной освещенности в данной точке внутри помещения к освещенности на горизонтальной плоскости под открытым небом при рассеянном свете в тот же момент. Естественное освещение помещений создается как за счет прямого солнечного облучения (инсоляция), так и за счет рассеянного и отраженного от небосвода и земной поверхности света и зависит от ориентации светопроемов по сторонам света. При ориентации окон на южные румбы создаются лучшие условия естественной освещенности, чем при ориентации на север. При восточной ориентации окон прямые солнечные лучи проникают в помещение в утренние часы, при западной - во второй половине дня.

На интенсивность естественного освещения помещений влияет также степень затемнения света близлежащими зданиями или зелеными насаждениями. Если через окно не просматривается небосвод, то в данное помещение не проникают прямые солнечные лучи. Это приводит к освещению помещения рассеянными лучами, что ухудшает санитарную характеристику помещения. Загрязненные стекла, особенно при двойном остеклении, снижают естественную освещенность до 50-70 %.

  1. Климат. Основные климатообразующие факторы. Характеристика климатических зон. Типы климата.

Кли́мат — многолетний режим погоды, характерный для данной местности в силу её географического положения.

Климат — статистический ансамбль состояний, через который проходит система: гидросфера → литосфера → атмосфера за несколько десятилетий. Под климатом принято понимать усреднённое значение погоды за длительный промежуток времени (порядка нескольких десятилетий) то есть климат — это средняя погода. Таким образом, погода — это мгновенное состояние некоторых характеристик (температура, влажность, атмосферное давление). Отклонение погоды от климатической нормы не может рассматриваться как изменение климата, например, очень холодная зима не говорит о похолодании климата. Для выявления изменений климата нужен значимый тренд характеристик атмосферы за длительный период времени порядка десятка лет. Основными глобальными геофизическими циклическими процессами, формирующими климатические условия на Земле, являются теплооборот, влагооборот и общая циркуляция атмосферы. Климатические пояса и типы климата

Климатические пояса и типы климата существенно меняются по широте, начиная от экваториальной зоны и заканчивая полярной, но климатические пояса являются не единственным фактором, также важное влияние оказывает близость моря, система циркуляции атмосферы и высота над уровнем моря. Не следует путать понятия «климатический пояс» и «природная зона».

В России и на территории бывшего СССР использовалась классификация типов климата, созданная в 1956 году известным советским климатологом Б. П. Алисовым. Эта классификация учитывает особенности циркуляции атмосферы. Согласно этой классификации выделяется по четыре основных климатических пояса на каждое полушарие Земли: экваториальный, тропический, умеренный и полярный (в северном полушарии — арктический, в южном полушарии — антарктический). Между основными зонами находятся переходные пояса — субэкваториальный пояс, субтропический, субполярный (субарктический и субантарктический). В этих климатических поясах, в соответствии с преобладающей циркуляцией воздушных масс, можно выделить четыре типа климата: материковый, океанический, климат западных и климат восточных берегов. Классификация климата

Экваториальный пояс

Экваториальный климат — климат, где ветра слабы, колебания температур невелики (24—28 °С на уровне моря), а осадки очень обильны (от 1,5 тыс. до 5 тыс. мм в год) и выпадают равномерно в течение всего года.

Субэкваториальный пояс

Тропический муссонный климат — здесь летом вместо восточного пассатного переноса между тропиками и экватором возникает западный перенос воздуха (летний муссон), приносящий большую часть осадков. В среднем их выпадает почти столько же, сколько и в экваториальном климате . На обращённых к летнему муссону склонах гор, выпадают осадки, наибольшие для соответствующих районов, самый тёплый месяц как правило бывает непосредственно перед наступлением летнего муссона. Характерен для некоторых районов тропиков (Экваториальная Африка, Южная и Юго-Восточная Азия, Северная Австралия). В Восточной Африке и на Юго-Западе Азии наблюдаются и самые высокие средние годовые температуры на Земле (30—32 °С).[4]

Муссонный климат на тропических плато

Тропический пояс

Тропический сухой климат

Тропический влажный климат

Субтропический пояс

Средиземноморский климат

Субтропический континентальный климат

Субтропический муссонный климат

Климат высоких субтропических нагорий

Субтропический климат океанов

Умеренный пояс

Умеренный морской климат

Умеренно-континентальный климат

Умеренный континентальный климат

Умеренный резко континентальный климат

Умеренный муссонный климат

Субполярный пояс

Субарктический климат

Субантарктический климат Полярный пояс: Полярный климат

Арктический климат

Антарктический климат Также в климатологии используются следующие понятия, связанные с характеристикой климата:

Континентальный климат — «климат, который формируется под воздействием на атмосферу крупных массивов суши; распространён во внутренних областях материков. Для него характерны большие суточная и годовая амплитуды температуры воздуха.»

Морской климат — «климат, который формируется под воздействием на атмосферу океанических пространств. Наиболее резко выражен над океанами, но распространяется и на районы материков, подвергающиеся частым воздействиям морских воздушных масс.»

Горные климаты — «климатические условия в горных местностях». Основной причиной отличий климата гор от климата равнин является увеличение высоты над уровнем моря. Помимо этого, важные особенности создаются характером рельефа местности (степенью расчленения, относительной высотой и направлением горных хребтов, экспозицией склонов, шириной и ориентировкой долин), своё влияние оказывают ледники и фирновые поля. Различают собственно горный климат на высотах менее 3000—4000 м и высокогорный климат на больших высотах.

Аридный климат — «климат пустынь и полупустынь». Здесь наблюдаются большие суточная и годовая амплитуды температуры воздуха; почти полное отсутствие или незначительное количество осадков (100—150 мм в год). Получаемая влага очень быстро испаряется."

Гумидный климат — климат с избыточным увлажнением, при котором солнечное тепло поступает в количествах, недостаточных для испарения всей влаги, поступающей в виде осадков

Нивальный климат — «климат, где твёрдых осадков выпадает больше, чем может растаять и испариться.» В результате образуются ледники и сохраняются снежники.

Солярный климат (радиационный климат) — рассчитываемое теоретически поступление и распределение по земному шару солнечной радиации (без учёта местных климатообразующих факторов

Муссонный климат — климат, при котором причиной смены времён года является смена направления муссона. Как правило, при мусонном климате бывает обильное осадками лето и очень сухая зима. Только в восточной части Средиземноморья, где летнее направление муссонов — с суши, а зимнее — с моря, основное количество осадков выпадает зимой.

Пассатный климат

Краткая характеристика климатов России:

Арктический: t января −24…-30, t лета +2…+5. Осадки — 200—300 мм.

Субарктический: (до 60 градуса с.ш.). t лета +4…+12. Осадки — 200—400 мм.

Умеренно континентальный: t января −4…-20, t июля +12…+24. Осадки — 500—800 мм.

Континентальный климат: t января −15…-25, t июля +15…+26. Осадки — 200—600 мм.

Резко континентальный: t января −25…-45, t июля +16…+20. Осадки — 200—500 мм.

Муссонный: t января −15…-30, t июля +10…+20. Осадки 600—800 мм. Климатообразующие факторы

Климат планеты зависит от целого комплекса внешних и внутренних факторов. Большинство внешних факторов влияют на суммарное количество солнечной радиации, получаемого планетой, а также её распределение по сезонам, полушариям и континентам.

Внешние факторы

Параметры земной орбиты и оси

1)Расстояние между Землёй и Солнцем — определяет количество солнечной энергии, получаемой Землёй.

2)Наклон оси вращения Земли к плоскости орбиты — определяет сезонные изменения.

3)Эксцентриситет орбиты Земли — влияет на распределение тепла между Северным и Южным полушарием, а также на сезонные изменения.

Солнечная активность с 11-летними, вековыми и тысячелетними циклами;

Различие угла падения солнечных лучей на различных широтах, что влияет на степень прогревания поверхности и следовательно, воздуха;

Скорость вращения Земли практически не изменяется, является постоянно действующим фактором. Благодаря вращению Земли существуют пассаты и муссоны, а также образуются циклоны.

Падения астероидов;

Приливы и отливы вызванные действием луны.

Внутренние факторы

1)Конфигурация и взаимное расположение океанов и континентов — появление континента в полярных широтах может привести к покровному оледенению, и изъятию значительного количества воды из ежедневного круговорота, также образование суперконтинентов Пангей всегда сопровождался общей аридизацией климата, нередко на фоне оледенения, также расположение континентов оказывает большое влияние на систему океанских течений;

2)Извержения вулканов способны вызвать кратковременное изменение климата, вплоть до вулканической зимы;

3)Альбедо (характеристика отражательной способности поверхности) земной атмосферы и поверхности влияет на количество отражённых солнечных лучей;

4)Воздушные массы (в зависимости от свойств воздушных масс определяется сезонность выпадения осадков и состояния тропосферы);

5)Влияние океанов и морей (если местность отдалена от морей и океанов, то увеличивается континентальность климата. Наличие рядом океанов смягчает климат местности, исключение — наличие холодных течений);

6)Характер подстилающей поверхности (рельеф, особенности ландшафта, наличие и состояние ледовых покровов);

7)Деятельность человека (сжигание топлива, выброс различных газов, селькохозяйственная деятельность,уничтожение лесов, урбанизация);

8)Тепловые потоки планеты.

  1. Погода, ее определение. Клинические типы погоды по Г.Б. Федорову. Влияние на организм. Сезонные и метеотропные заболевания, их профилактика.

Пого́да — совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определённый момент времени в той или иной точке пространства. Понятие «Погода» относится к текущему состоянию атмосферы, в противоположность понятию «Климат», которое относится к среднему состоянию атмосферы за длительный период времени. Если нет уточнений, то под термином «Погода» понимают погоду на Земле. Погодные явления протекают в тропосфере (нижней части атмосферы) и в гидросфере. Погоду можно описать давлением, температурой и влажностью воздуха, силой и направлением ветра, облачностью, атмосферными осадками, дальностью видимости, атмосферными явлениями (туманами, метелями, грозами) и другими метеорологическими элементами. Климатически типы погоды (по Федорову):

Тип погоды

Межсуточные колебания

Скорость движения воздуха, м/с

Температура , С

Атмосф давл, мм рт ст

Оптимальный

Не более 2

Не более3,0

Не более3,0

Раздражающий

Не более4

Не более6,0

Не более9,0

Острый

Более 4

6,0

 Более 9,0

Федоров (1956) характеризовал погодные условия с учетом осадков, атмосферного давления и межсуточных колебаний метеорологических элементов. Он выделял три типа погоды: оптимальный (I тип), раздражающий (II тип) и острый (III тип).

Оптимальными считаются погоды, благоприятно влияющие на организм человека (щадяще на него действующие). К ним относятся комплексы погод преимущественно с относительно ровным ходом метеорологических элементов, умеренно влажные или сухие, маловетреные, преимущественно солнечные с межсуточной изменчивостью температуры в пределах 2 °С и атмосферного давления в пределах 4 гПа.

К раздражающим относятся погоды преимущественно с нарушением плавного хода одного или нескольких метеорологических элементов: солнечные и пасмурные, сухие и влажные, когда межсуточная изменчивость атмосферного давления не превышает 8 гПа, температуры 4 °С, ветер до 9 м/с.

К острым погодам относятся преимущественно с резким перепадом значений метеорологических элементов, когда атмосферное давление поднимается или падает более чем на 8 гПа, температура более чем на 4 °С, дождевые, пасмурные, ветреные (более 9 м/с), циклонические.

  1. Проблема акклиматизации. Гигиенические мероприятия, способствующие акклиматизации на севере и юге.

  1. Физико-химические свойства воды. Физиолого-гигиеническое значение воды. Нормы водопотребления.

Наиболее важны следующие свойства:

Чистота воды – наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

Поверхностное натяжение – это степень сцепления молекул воды друг с другом. Этот параметр определяет степень усвояемости воды организмом. Чем более «жидкая» вода, тем меньше энергии требуется организму для разрыва молекулярных связей и осуществления взаимодействия. Поверхностное натяжение воды в среднем сейчас составляет около 73 д/см. Поверхностное натяжение клетки нашего организма около 43 д/см.

Жесткость воды – наличие в ней солей. От жесткости зависит также степень взаимодействия воды с другими веществами.

Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию (в среднем 7,5 ед.). Кислотно-щелочное равновесие воды в настоящее время колеблется от 3,0 ед. до 7,0 ед. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется. Это ведет к развитию болезней.

Окислительно-восстановительный потенциал воды (ОВП). Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов. Это очень важный показатель для организма человека. ОВП межклеточных жидкостей в организме в среднем равно -50 – (-100).

ОВП воды в среднем равно +55 – (+630).

Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду. Вся жидкость в организме структурирована. Только в таком состоянии она способна проводить энергетические импульсы. Когда вода находится в состоянии твердого кристалла, молекулярная решетка жестко ориентирована. При таянии разрываются жесткие структурные молекулярные связи. И часть молекул, высвобождаясь, образует текучесть воды.

Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для здоровья. Жидкости организма представляют собой электролиты, и восполнение минерального состава идет, в том числе, за счет воды. Необходимо учитывать, что легче в организме усваиваются минералы органического происхождения.

Вода – это общий показатель активности физиологических систем, фон и среда, в которой протекают все жизненно важные процессы. Неслучайно в организме человека содержание воды приближается к 60 % от всего веса тела. Установлено, что процессы старения связаны с потерей воды клетками.

Необходимо отметить, что реакции гидролиза, а также все окислительно-восстановительные реакции протекают активно только в водных растворах.

Вода принимает активное участие в так называемом водно-солевом обмене. Процессы пищеварения и дыхания протекают нормально в случае достаточного количества воды в организме. Велика роль воды и в выделительной функции организма, что способствует нормальному функционированию мочеполовой системы.

Велика роль воды и в процессах теплорегуляции организма. Она участвует, в частности, в одном из важнейших процессов – процессе потоотделения.

Необходимо отметить, что с водой в организм поступают минеральные вещества, притом в такой форме, когда они усваиваются почти полностью. Роль воды как источника минеральных солей сейчас общепризнана. Это так называемое фармакологическое значение воды. А Минеральные соли в воде находятся в виде ионов, что благоприятно для их усвоения организмом. Макро– и микроэлементы в продуктах питания находятся в виде комплексных соединений, которые даже под влиянием желудочно-кишечного сока плохо диссоциируют и поэтому хуже усваиваются.

Вода – это универсальный растворитель. Она растворяет все физиологически активные вещества. Вода – это жидкая фаза, имеющая определенную физическую и химическую структуру, которая и определяет ее способность как растворителя. Живые организмы, потребляющие воду с разной структурой, развиваются и растут по-разному. Поэтому структуру воды можно рассматривать как важнейший биологический фактор. Структура воды может изменяться при ее опреснении. На структуру воды в значительной степени влияет ионный состав воды.

Молекула воды – соединение не нейтральное, а электрически активное. Она имеет два активных электрических центра, которые создают вокруг себя электрическое поле.

Для строения молекулы воды характерны две особенности:

1) высокая полярность;

2) своеобразное расположение атомов в пространстве.

По современным представлениям молекула воды – это диполь, т. е. она имеет 2 центра тяжести. Один – центр тяжести положительных зарядов, другой – отрицательных. В пространстве эти центры не совпадают, они асимметричны, т. е. молекула воды имеет два полюса, создающих вокруг молекулы силовое поле, молекула воды полярна.

В электростатическом поле пространственное расположение молекул воды (структура воды) определяет биологические свойства воды в организме.

Молекулы воды могут существовать в следующих формах:

1) в виде одиночной молекулы воды – это моногидроль, или просто гидроль (Н2О)1;

2) в виде двойной молекулы воды – это дигидроль (Н2О)2;

3) в виде тройной молекулы воды – тригидроль (Н2О)3.

Агрегатное состояние воды зависит от наличия этих форм. Лед обычно состоит из тригидролей, имеющих самый большой объем. Парообразное состояние воды представлено моногидролями, так как значительное тепловое движение молекул при температуре 100 °С нарушает их ассоциацию. В жидком состоянии вода представляет смесь гидроля, дигидроля и тригидроля. Соотношение между ними определяется температурой. Образование ди– и тригидроля происходит вследствие притяжения молекул воды (гидролей) друг к другу.

В зависимости от динамического равновесия между формами различают определенные виды воды.

1. Вода, связанная с живыми тканями, – структурная (льдоподобная, или совершенная, вода), представленная квазикристаллами, тригидролями. Эта вода отличается высокой биологической активностью. Температура ее замерзания –20 °С. Такую воду организм получает только с натуральными продуктами.

2. Свежеталая вода – на 70 % льдоподобная вода. Обладает лечебными свойствами, способствует повышению адаптогенных свойств, но быстро (через 12 ч) теряет свои биологические свойства стимулировать биохимические реакции в организме.

3. Свободная, или обычная, вода. Температура ее замерзания равна 0 °С.

Дегидратация

Содержание воды в организме человека составляет 60 % массы его веса. Организм постоянно теряет оксидационную воду различными путями:

1) с воздухом через легкие (1 м3 воздуха содержит в среднем 8—9 г воды);

2) через почки и кожу.

В целом человек за сутки теряет до 4 л воды. Естественные потери воды должны быть компенсированы введением определенного количества воды извне. Если потери не эквивалентны введению, в организме наступает дегидратация. Недостаток даже 10 % воды может значительно ухудшить состояние, а увеличение степени дегидратации до 20 % может приводить к нарушению жизненных функций и к смерти. Дегидратация более опасна для организма, чем голодание. Без пищи человек может прожить 1 месяц, а без воды – до 3 суток.

Регуляция водного обменаосуществляется с помощью центральной нервной системы (ЦНС) и находится в ведении пищевого центра и центра жажды.

В основе возникновения чувства жажды лежит, видимо, изменение физико-химического состава крови и тканей, в которых происходят нарушения осмотического давления вследствие обеднения их водой, что приводит к возбуждению отделов ЦНС.

Большую роль в регуляции водного обмена играют железы внутренней секреции, особенно гипофиз. Взаимосвязь водного и солевого обмена называют водно-солевым обменом.

Нормы водопотребления определяются:

1) качеством воды;

2) характером водоснабжения;

3) состоянием организма;

4) характером окружающей среды, и в первую очередь температурно-влажностным режимом;

5) характером работы.

Нормы водопотребления складываются из физиологических потребностей организма (2,5—5 л в сутки для отправления физиологических функций) для поддержания жизнедеятельности и воды, необходимой для хозяйственно-коммунальных целей. Последние нормы отражают санитарный уровень населенного пункта.

В сухом и жарком климате, при выполнении интенсивной физической работы физиологические нормы повышаются до 8—10 л в сутки, в условиях сельской местности (при децентрализованном водоснабжении) – до 30—40 л. Нормы водопотребления на промышленном предприятии зависят от температуры окружающей среды производства. Особенно они велики в горячих цехах. Если количество выделяемого тепла составляет 20 ккал в 1 м3 в час, то нормы водопотребления за смену составят 45 л (с учетом душирования). Согласно санитарным стандартам нормы водопотребления регламентируются так:

1) при наличии водопровода и отсутствии ванн – 125—160 л в сутки на человека;

2) при наличии водопровода и ванн – 160—250 л;

3) при наличии водопровода, ванн, горячей воды – 250—350 л;

4) в условиях использования водоразборных колонок —30—50 л.

Сегодня в крупных современных городах водоразбор на душу населения в сутки составляет 450 л и более. Так, в Москве самый высокий уровень водопотребления – до 700 л. В Лондоне – 170 л, Париже – 160 л, Брюсселе – 85 л.

Вода является социальным фактором. От количества и качества воды зависят социальные условия жизни и уровень заболеваемости. По данным ВОЗ до 500 млн заболеваний в год, возникающих на Земле, связаны с качеством воды и уровнем водопотребления.

Факторы, формирующие качество воды, можно разделить на 3 большие группы:

1) факторы, определяющие органолептические свойства воды;

2) факторы, определяющие химические свойства воды;

3) факторы, определяющие эпидемиологическую опасность воды.

Факторы, определяющие органолептические свойства воды

Органолептические свойства воды формируют природные и антропогенные факторы. Запах, привкус, окраска и мутность являются важными характеристиками качества питьевой воды. Причины появления запахов, привкуса, цветности и мутности воды весьма разнообразны. Для поверхностных источников это в первую очередь почвенные загрязнения, поступающие с током атмосферных вод. Запах и привкус могут быть связаны с цветением воды и с последующим разложением растительности на дне водоема. Вкус воды определяется ее химическим составом, соотношением отдельных компонентов и количеством этих компонентов в абсолютных величинах. Это особенно относится к высокоминерализованным подземным водам в силу повышенного содержания в них хлоридов, сульфатов натрия, реже – кальция и магния. Так, хлорид натрия обуславливает соленый вкус воды, кальций – вяжущий, а магний – горьковатый. Вкус воды определяется и газовым составом: 1/3 всего газового состава составляет кислород, 2/3 – азот. В воде очень небольшое количество углекислого газа, но роль его велика. Углекислота может быть представлена в воде в различных формах:

1) растворенной в воде с образованием угольной кислоты CO2 + H2O = H2CO3;

2) диссоциированной угольной кислоты H2CO3 = H + HCO3 = 2H + CO3 с образованием бикарбонат иона HCO3 и CO3 – карбонат иона.

Это равновесие между различными формами углекислоты определяется рН. В кислой среде, при рН = 4 присутствует свободная углекислота – СО2. При рН = 7—8 присутствует ион НСО3 (умеренно щелочная). При рН = 10 присутствует ион СО3 (среда щелочная). Все эти компоненты в разной степени определяют вкус воды.

Для поверхностных источников основной причиной появления запахов, привкуса, цветности и мутности являются почвенные загрязнения, поступающие со стоком атмосферных вод. Неприятный привкус воды характерен для широко распространенных высокоминерализованных вод (особенно на юге и юго-востоке страны) преимущественно в силу повышенного содержания концентрации хлоридов и сульфатов натрия, реже кальция и магния.

Окраска (цветность) природных вод чаще зависит от присутствия гуминовых веществ почвенного, растительного и планктонового происхождения. Строительство крупных водохранилищ с активными процессами развития планктона способствует появлению в воде неприятных запахов, привкусов и цветности. Гуминовые вещества безвредны для человека, но ухудшают органолептические свойства воды. Их трудно удалить из воды, к тому же они обладают высокой сорбционной способностью.

  1. Эпидемиологическое значение воды. Вода как причина массовых инфекционных заболеваний. Профилактика водных эпидемий.

Вода — один из путей передачи возбудителей заболеваний, в частности инфекционных. Инфекции, передающиеся преимущественно через воду, называются водными. К ним относятся: брюшной тиф, дизентерия, холера, инфекционный гепатит, полиомиелит, а также инфекционные болезни животных - туляремия и лептоспирозные заболевания. Передаются через воду заболевания кожных покровов и слизистых оболочек (трахома, чесотка, грибковые заболевания, аденовирусные конъюнктивиты и др.). Заражение ими возможно при использовании одной и той же воды, при мытье и купании в ванных и бассейнах. Вода может играть важную роль и в передаче возбудителей ряда зоонозных, главным образом среди животных (сап, ящур, сальмонеллезы, сибирская язва).

Загрязнение воды патогенными микробами происходит многими путями. Наиболее распространенный из них — спуск в водоемы неочищенных сточных вод, в частности инфекционных больниц, ветеринарных лечебниц, промышленных предприятий, перерабатывающих животное сырье, и банно-прачечных предприятий. Фекальное загрязнение водоемов, в частности колодцев, может вызываться кроме этого поверхностными водами в периоды ливневых дождей и таяния снегов, а также почвенными водами, если в них проникают нечистоты из выгребных ям.

Выживаемость некоторых патогенных микроорганизмов в воде

Возбудители

Среда обитания

Колодез­ная вода (чистая)

Речная вода

Стерильная вода

Лед

Морская вода

Бактерии брюш­ного тифа и паратифов

107-540 дней

7-21 день

167-365 дней

Несколь­ко месяцев

14-15 дней

Бактерии дизенте­рии

10-11 дней

5-6

дней

1-2 месяца

17-24

дня

1-12 дней

Холерный вибри­он

-

От 7 дней до несколь­ких месяцев

Свыше 12 месяцев

Несколь­ко месяцев

До 3 месяцев

Бактерии туляре­мии

12-60 дней

7-31 день

3-15 дней

32 дня

-

Лептоспиры

-

14-21 день

До 7 дней

-

-

Возбудители бру­целлеза

-

-

До 2 месяцев

-

-

Споры сибирской язвы

-

-

Годы

-

-

При центральном водоснабжении становится возможным загрязнение воды не только в месте ее забора (открытые водоемы), но и в головных сооружениях, а также в водоразводящей сети, чаще всего в случаях нарушения герметичности водопроводных труб и других аварий или подсоединения технических водопроводов к водопроводам питьевым.

Водоемы могут загрязняться и выделениями диких животных, главным образом грызунов, которые с мочой и фекалиями могут выделять в воду возбудителей таких, например, болезней, как туляремия и лептоспирозы. Вода, загрязненная патогенными микробами, может вызвать массовые заболевания (эпидемии). Чаще других заражаются поверхностные воды, редко - артезианские.

Сравнительная гигиеническая оценка поверхностных и подземных источников водоснабжения

Факторы, влияющие на качество воды

Виды источников водоснабжения

Поверхностные

Подземные

грунтовые

артезианские

Влияние

Жизнедеятельность населения (плотность, род занятий)

Очень большое

Большое

Незначитель­ное

Природные (осадки, климат, сезонность)

Очень большое

Большое

Незначитель­ное

Бактериальное загряз­нение

Очень частое

Редкое

Очень редкое

Изменяемость свойств воды

Очень значительное

Значительное

Весьма незна­чительное

Эти обстоятельства необходимо учитывать при выборе мест для купания.

Показатели бактериологического загрязнения воды:

микробное число воды — общее количество микробов, содержащихся в 1 мл воды;

титр кишечной палочки — наименьший объем воды, в котором обнаруживается одна кишечная палочка;

индекс кишечной палочки — количество кишечных палочек в 1 л воды.

Микробное число воды показывает, насколько благоприятны или неблагоприятны условия для жизни микробов. В норме в 1 мл водопроводной воды не должно быть более 100, а в колодезной — более 1000 микробов. В бассейнах допускается до 1000 микробов в 1 мл воды.

Кишечная палочка, обычно обитающая в толстом кишечнике человека и животных, служит показателем свежего загрязнения воды экскрементами животных и человека. В соответствии с гигиеническими нормами титр кишечной палочки для водопроводной питьевой воды установлен не менее 300 мл (только в этом количестве, а не в меньшем допускается обнаружение одной кишечной палочки). Индекс кишечной палочки — 3 (наличие в 100 мл воды не более трех кишечных палочек). Для колодезной воды титр кишечной палочки не должен быть менее 100. Вода бассейнов должна соответствовать качеству питьевой воды, но для нее допускается титр 100.

показателям качества воды является также наличие в ней яиц гельминтов. В питьевой воде и воде крытых бассейнов яйца гельминтов должны отсутствовать. В открытых бассейнах допускается не более 1 яйца гельминта в 1 м3 воды.

Флора и фауна воды. ГОСТ «Вода питьевая» не допускает содержания в питьевой воде видимых на глаз водных организмов.

Источники водоснабжения. Основные источники водоснабжения — закрытые водоемы (подземные воды) и открытые (реки, озера, пруды, водохранилища).

Приводим гигиенические требования к качеству источников централизованного хозяйственно-питьевого водоснабжения.

Закрытые водоисточники. Подземные воды образуются преимущественно за счет проникновения в почву атмосферных осадков, которые, фильтруясь почвой, скапливаются в рыхлых ее породах (песок и др.), расположенных на водонепроницаемых грунтах (глина, гранит и др.). В зависимости от глубины залегания водоносных слоев подземные воды делятся на грунтовые и межпластовые. Грунтовые воды залегают на первом водонепроницаемом грунте, они наиболее близки к поверхности почвы и не защищены сверху водонепроницаемым слоем почвы. Поэтому они легко загрязняются стоками и отбросами, просачивающимися через почву с поверхности с дождевыми и талыми водами. На территории населенных пунктов грунтовые воды, как правило, бывают непригодными для водоснабжения.

Межпластовые воды располагаются в глубоких водоносных слоях, между двумя водонепроницаемыми слоями грунта.

Они наиболее надежные и безопасные в гигиеническом отношении источники водоснабжения населения.

Подземные воды, выходящие на поверхность, называются ключевыми, или родниковыми. Они отличаются наибольшей чистотой и высокими вкусовыми качествами. В них растворены содержащиеся в почве минеральные соли и углекислый газ, выделяющийся при разложении органических веществ. Поэтому эти воды более минерализованы и насыщены углекислотой, чем вода открытых водоемов, но одновременно они жестче, а их температура ниже.

Открытые водоисточники. Вода открытых водоемов отличается низкой минерализацией. Ее физические свойства обычно хуже, чем у воды из подземных источников. Ее химический состав, физические свойства и бактериальная загрязненность непостоянны и зависят от времени года и ряда местных условий. Во время половодья и обильных дождей в них стекают массы воды, смывающие с поверхности почвы различные загрязняющие ее вещества и микроорганизмы (органические вещества, бактерии). Это приводит к резкому ухудшению органолептических свойств такой воды. Очень часто открытые водоисточники используются для сброса промышленных, сельскохозяйственных и бытовых отходов.

Поэтому межпластовые воды предпочтительнее (как по качеству, так и по безопасности), и их можно употреблять для питья в натуральном виде, тогда как вода открытых водоемов

и грунтовые воды требуют предварительной очистки и обеззараживания.

Очистка воды. Это сложный и многоэтапный процесс. Первый этап — очистка воды от взвешенных частиц отстаиванием в специальных отстойниках (горизонтальных и вертикальных) и фильтрацией. Для ускорения этих процессов применяется коагуляция — очистка воды с помощью специальных химических соединений — коагулянтов. В качестве коагулянта чаще всего используется сернокислый алюминий (глинозем), который, вступая в реакцию с солями кальция и магния, образует с ними гидраты в виде хлопьев, оседающих на дно очистных сооружений.

После коагуляции вода фильтруется. Для этого применяются различные фильтры: прямоугольные резервуары площадью 50— 100 м2, загруженные речным кварцевым песком на высоту 0,6—1 м, под которыми находятся поддерживающий слой гравия и дренажные трубы для отвода профильтрованной воды. На поверхности песка скапливаются мелкие хлопья коагулянта, не успевшие осесть в отстойнике, которые уменьшают диаметр пор между песчинками и повышают задерживающую способность фильтра. После 8— 12 ч работы фильтр промывается обратным током воды.

В результате очистки вода делается прозрачной, бесцветной, устраняются запахи, некоторые вредные примеси, задерживаются яйца гельминтов и на 95—98% бактерии.

Дезинфекция воды. Это освобождение ее от возбудителей различных инфекционных заболеваний. Наиболее распространенный способ дезинфекции воды — хлорирование газообразным хлором. Для этого применяются хлораторы, обеспечивающие дозировку и непрерывную подачу хлора в резервуары с чистой профильтрованной водой или непосредственно в водопроводную сеть. Хлорирование - один из самых старых, простых, дешевых и достаточно надежных способов обеззараживания воды.

Для обеззараживания воды применяются также озонирование и обработка ультрафиолетовыми лучами. Бактерицидное действие озона сильнее, чем хлора. Озонирование улучшает вкус и органолептические свойства воды. Однако это более дорогой способ, требующий сложной аппаратуры, тщательного ухода за ней и очень хорошей предварительной очистки воды фильтрацией. Поэтому широкого распространения он не получил, как и обеззараживание воды УФ лучами.

Очистка и обеззараживание воды в полевых условиях. В туристском походе могут применяться те же способы, что и на водопроводных станциях, но в более упрощенном виде. Освобождение воды от взвешенных веществ достигается ее отстаиванием в течение 2— 3 ч или фильтрованием с помощью простейших фильтров (из песка, угля). Самый простой и надежный способ обеззараживания воды в походе — ее кипячение в течение 5 мин. В полевых условиях может применяться и хлорирование воды, лучше после фильтрации. Для этого используют хлорную известь.

Доза хлора устанавливается опытным путем. Необходимо, чтобы в 1 л воды находилось 0,3-0,4 мг остаточного хлора в течение 30 мин контакта воды с хлором — летом и 1—2 ч — зимой. Нормирование качества питьевой воды после хлорирования представлено в таблице 16.

Можно хлорировать воду непосредственно в шахтном колодце. Для этого после определения в нем объема воды вносят раствор хлорной извести из расчета 1 мл 1%-ного раствора на 1 л воды.

Хранение и разбор питьевой воды. Согласно санитарным правилам спортивные сооружения снабжаются кипяченой остуженной водой, которая должна храниться в специальных металлических бачках емкостью 25 - 30 л или в графинах. Ежедневно вода заменяется свежей, а сосуды промываются.

Если баки не чистятся и доступны загрязнению извне, то кипяченая вода может оказаться более опасной в эпидемиологическом отношении, чем сырая. Большое гигиеническое значение имеет способ разбора воды: желательно использование пластиковых стаканчиков или фонтанчиков. Воду пьют прямо из струи, бьющей вверх под напором воды в баке или под давлением водопроводной воды. Струя должна иметь определенный наклон, исключающий обратное попадание воды на трубку, из которой она вытекает, что в значительной мере зависит от давления воды.

Методика эпидемиологического анализа сводится к тому, что, собрав данные, характеризующие динамику заболеваемости, территориальное распределение заболеваний, возрастной, профессиональный и половой состав заболевших, вычислив показатели заболеваемости, очаговости и пр. Устанавливают, насколько эти данные соответствуют тем признакам, которые считаются характерными для острых водных эпидемий

Считаем целесообразным дать некоторые рекомендации по сбору и оценке некоторых из упомянутых показателей.

1.При установлении динамики заболеваемости следует использовать такой показатель как день заболевания, а не такие показатели как день обращения за медицинской помощью, день госпитализации или постановки диагноза. Тщательной проверке следует подвергнуть случаи выходящие за рамки предполагаемых хронологических рамок вспышки. Особенно важное значение имеет уточнение даты заболевания при инфекциях с постепенным началом заболевания - например, брюшной тиф и паратифы.

2. Этиологический диагноз. Учитывая, что полиэтилогичность является одним из признаков водной эпидемии, следует собрать данные не только о виде выделенного возбудителя, но и о его фаго-, серо-, био-вариантах.

3.Анализ территориального распространения заболеваний имеет важнейшее значение в диагностике водных эпидемий. Соответствие территории, население которой охвачено эпидемией, и территорией получающей воду из того или иного водоисточника - один из надежнейших признаков и острых хронических эпидемий. Анализ этого вопроса включает два основных элемента. Первый из них - уточнения места жительства, места работы, места временного пребывания заболевших. Следует помнить, что часть лиц фактически проживает не по месту своей официальной прописки, а в других местах. Кроме того, заражение может произойти не по месту жительства заболевшего, а по месту его работы или вообще по месту пребывания по тем или иным надобностям в другой части населенного пункта. В ходе эпидемиологического обследования все эти данные должны быть уточнены в отношении каждого больного и нанесены на план населенного пункта. На втором этапе проводят составление территориального распределения заболеваемости и схемы водоснабжения, пытаясь выявить приуроченность заболеваний к определенным водопроводам (если в населенном пункте несколько разных систем водоснабжения) определенным ветвям водопровода, отдельным водоразборным точкам, отдельным колодцам и т.д.

4.Анализ заболеваемости по возрастному, профессиональному и некоторым другим признакам может иметь определенное значение, поскольку при некоторых вариантах водных эпидемий, распределение больных по этим признакам имеет свои особенности. Наибольшее значение учет этих признаков имеет при выявлении “купальных” и сельскохозяйственных вспышек лептоспирозов, а при водно-питьевых вспышках - при заражении воды в отдельных емкостях, обеспечивающих определенные контингенты.

5.Вычисление интенсивных показателей заболеваемости является важным этапом эпидемиологического обследования водных вспышек и эпидемий. Если заподозрено заражение воды того или иного естественного или искусственного водоисточника, следует установить численность населения пользующегося водой данного водоисточника и, зная число заболевших, вычислить интенсивные показатели заболеваемости. Сравнения этого показателя с аналогичным, полученным в отношении населения пользующегося другим источником водоснабжения, дает в руки эпидемиолога веский аргумент для признания (или определения) водной природы изучаемой эпидемии.

Следует указать, что вычисление этих показателей иногда является довольно трудоемким, поскольку определение численности населения, проживающего на территории той или иной системы водоснабжения, следует проводить путем подворных обходов.

Необходимость применения этого метода можно иллюстрировать следующими личными наблюдениями. Мы изучили эпидемическую вспышку брюшного тифа на территории одного большого города. Заболеваемость была нанесена на план города и сопоставлена с системой водоснабжения. Четко выявилась пораженность территории, снабжавшейся водой не общегородским водопроводом, а отдельной небольшой водопроводной системой. У нас был ряд оснований считать, что заражение воды связано с плохой работой системы обеззараживания воды на головных сооружениях упомянутой системы. Вместе с тем более детальный анализ картографического материала заставил усомниться в этом предположении. Дело в том, что на участке были две улицы, которые, судя по картограмме, имели совершенно различное число заболевших на четной и нечетной сторонах улицы, хотя обе стороны снабжались водой одного и того же водопровода. Возникло предположение, что в данном случае имело место заражение лишь отдельных ветвей водопровода. Все эти сомнения отпали сами собой, когда мы выехали на местность. Оказалось, что сторона улицы, где было большое число заболеваний, была застроена крупными 60-ти квартирными домами. Благополучная сторона улицы состояла из небольших индивидуальных домиков с приусадебными участками. К тому же часть этих домиков была уже снесена (для разработки нам были предоставлены планы 5-летней давности).

При проведении подворных обходов целесообразно также выяснять употребление населением сырой воды. Можно, например, разделить население на 3 группы: а) сырую воду не употребляли совсем; б) употребляли воду изредка; в) преимущественно пользуются сырой водой. Таким же образом можно выделить купальщиков.

Не следует смущаться низким интенсивным показателям заболеваемости среди лиц, употребляющих сырую зараженную воду. Следует помнить, что показатель заболеваемости редко превышает 10%, а иногда может быть и менее 1%. Поэтому, отсутствие заболевании у большинства употреблявших зараженную воду, не должно рассматриваться как доказательство не водного характера заболеваемости.

Если, в целом выявление острых водных эпидемий для опытного эпидемиолога, как правило, не представляет трудностей, то диагностика хронических водных эпидемий очень сложная задача. Причиной этого является ограниченное число признаков, характеризующих этот тип заболеваемости. Причины выявления этих эпидемий, такие же, как и острых - тщательный анализ заболеваемости на территории, на которой предполагается наличие хронической водной эпидемии и сравнение этих показателей с данными о соседних территориях с другой системой водоснабжения. Большое значение надо придавать сравнительному изучению сезонности.

Параллельно с изучением эпидемиологических данных следует начать сбор сведений, характеризующих водоисточник, заражение которого предполагается. Прежде всего, следует воспользоваться сведениями о водоисточниках, которыми располагает ЦГСЭН. Интерес представляют санитарные условия водоисточников, под которыми понимают степень плотности населения на данной территории, плотность застройки, благоустройство населенных мест, наличие источников загрязнения (выгреба, поглощающие колодцы, выпуски стоков, бани, прачечные, поля орошения, скотофермы) уровень мероприятий по обеззараживанию стоков. Эти обстоятельства необходимо учитывать при оценке санитарного состояния водоисточников.

Определенное значение имеет санитарно-топографическое изучение водоисточников. Изучению подлежит геологическая структура местности, где находится водоем, размеры водоема, скорость и направление движения воды, связь с источником загрязнения.

При составлении характеристики колодцев учитывают геологию грунта, глубину колодца, запас и скорость возобновления запаса воды, состояние сруба, состояние почвы вокруг колодца, способ забора воды, расстояние от жилых построек.

Все данные о водоисточнике вносят в его паспорт.

Определенное значение имеет органолептическое исследование, включающее определение прозрачности (прозрачной считается вода, если через ее 30 сантиметровый слой можно прочесть шрифт Снеллена), ее цвета, запаха, вкуса / По данным ряда исследователей и в частности Hydson (1962) мутность может служить косвенным показателем микробного, в том числе вирусного загрязнения воды. Станции, дающие очень прозрачную воду, обеспечивают хорошее бактериологическое качество воды и низкую заболеваемость вирусными инфекциями. Имеется параллелизм между показателями заболеваемости гепатитом и степенью осветления воды./. Известен ряд случаев, когда само население обращало внимание на внезапное изменение органолептических свойств воды, предшествовавшее началу эпидемии. В ряде случаев при обследовании водных эпидемий опрос населения о качестве воды позволяет уточнить момент аварии.

Важное значение имеют санитарно-гигиенические данные для выявления связи между объектами, которые могут загрязнять воду (например, выгреба, поглощающие колодцы и др.) и водоисточниками, а также между различными системами водоснабжения (например, технического и питьевого водопроводов). Суть методов по установлению такой связи заключается в том, что в объекты, которые могут служить источником загрязнения, вводят какой-либо индикатор, появление которого в водоисточнике и укажет на наличие такой связи. При этом требуется, чтобы примененный индикатор, во-первых, не мог бы появиться в водоисточнике каким-либо иным путем, кроме как при наличии подозреваемой связи, а во-вторых, примененный индикатор можно было бы возможно легче определить в самых незначительных количествах. В качестве индикатора чаще всего используют флюоресцин. В предполагаемый источник загрязнения наливают 2-5л 2% раствора этого вещества. Вода водоисточника, связь с которым подозревается, исследуется на зеленое окрашивание каждые 6-12 часов. Помимо флюоресцина могут быть использованы и другие индикаторы - сапрол, хлористый натрий, радиоактивные вещества, B.prodigiosum.

  1. Природный минеральный состав воды, его влияние на качество питьевой воды и здоровье населения.

Минеральные воды, природного происхождения в зависимости от состава в лечебном назначении делятся на бальнеологические группы:

1)углекислые минеральные воды (в их составе присутствует растворенная углекислота);

2)минеральная вода, не имеющая специфических свойств и компонентов (лечебное свойство обуславливается ионным составом и степенью минерализации);

3)сульфидные минеральные воды (в составе в большем количестве содержится сульфиды);

4)радиоактивные минеральные воды;

5)минеральные воды, содержащие в составе железо, мышьяк и полиметаллы;

6)кремнистые термальные воды;

7)термальные минеральные воды;

8)минеральные воды с большим содержанием органических веществ.

  1. Заболевания, обусловленные необычным минеральным составом природных вод. Значение микроэлементов воды в развитии неинфекционных заболеваний водного происхождения. Профилактика эндемических заболеваний.

Ухудшение здоровья в связи с употреблением питьевой воды может быть инфекционной и неинфекционной природы. Перенос с водой возбудителей инфекционных заболеваний может привести к массовым и тяжелым последствиям для здоровья населения. В первую очередь следует считаться с опасностью передачи через воду возбудителей кишечных инфекций: холеры, брюшного тифа, паратифов, дизентерии. Водные эпидемии в прошлые века были крупными бедствиями, уносившими тысячи человеческих жизней.

Серьезную опасность для здоровья населения представляет химический состав воды. В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, соотношение которых определяется условиями формирования воды, составом водоносных пород.

Вред здоровью жителей связан с особенностями химического состава воды. Химические вещества, содержащиеся в питьевой воде в различных сочетаниях, часто являются «факторами малой интенсивности», способствующими увеличению частоты болезней уже ранее распространенных среди населения.

Снижение сопротивляемости организма к различным заболеваниям в результате общетоксического действия питьевой воды приводит к росту общей заболеваемости, сердечнососудистых, кишечных неинфекционных, эндокринных и других заболеваний.

Различают патологические состояния и заболевания, вызванные повышенным природным содержанием химических элементов в питьевой воде и обусловленные техногенным загрязнением воды химическими веществами. Но одни и те же вещества, содержащиеся в питьевой воде (нитраты, свинец, хром и другие), могут быть вызваны как природными, так и техногенными причинами.

Имеются сведения о том, что высокая минерализация (солевой состав) питьевой воды является фактором, оказывающим определенное влияние на увеличение заболеваемости жителей болезнями нервной системы и органов чувств, а также частоты психических расстройств.

Повышенное содержание хлоридов в воде может способствовать развитию болезней системы кровообращения, новообразований мочеполовых органов, хлоридов и сульфатов - возникновению новообразований пищевода, желудка и других органов пищеварения.

Согласно опубликованным данным, повышенная жесткость (содержание бикарбонатов, сульфатов и хлоридов кальция и магния) питьевой воды может привести к увеличению распространенности среди населения болезней системы кровообращения, органов пищеварения, новообразований пищевода, желудка и других органов пищеварения, а также болезней эндокринной системы, расстройств питания и нарушения обмена веществ. Специалисты считают, что повышенная жесткость питьевой воды, обусловленная присутствием солей, является одной их причин развития мочекаменной болезни (уролитиаза).

Результаты проведенных исследований, свидетельствуют о том, что процент граждан, заболевших хроническими заболеваниями, в том числе заболеваниями: органов пищеварения, системы кровообращения (ишемической болезнью сердца, гипертонической болезнью) и хроническими заболеваниями органов дыхания, выше в группе пациентов, систематически употреблявших для питья сырую воду с повышенным содержанием сухого остатка и общей жесткостью, по сравнению с гражданами, употреблявшими только кипяченую или специально очищенную воду. Кроме того, распространенность заболеваний нервной системы (в первую очередь вегетососудистых дистоний), также оказалась выше в группе школьников, систематически употреблявших для питья сырую воду по сравнению с детьми, употреблявшими воду только кипяченую или очищенную.

Имеются сведения о том, что качество употребляемой питьевой воды оказывает влияние на самочувствие и успеваемость школьников. В результате исследований, установлено, что усталость и понижение работоспособности к середине дня отмечает 50% школьников, употребляющих водопроводную воду и 23% тех, кто пьет очищенную воду. Аналогичные данные были получены и при анализе ответов учеников на вопрос о самооценке здоровья: реже болеют дети, употребляющие очищенную воду (12%), чем те, кто пьет любую воду (60%).

В природных водах в норме содержатся микроэлементы (фтор, йод, молибден, селен и др.) и макроэлементы (натрий, кальций, фосфор и пр.) которые являются жизненно необходимыми. Избыточное или недостаточное поступление их в организм человека вызывает физиологические сдвиги или патологические изменения.

  1. Источники питьевого водоснабжения и их сравнительная гигиеническая характеристика. Принципы выбора источников хозяйственно-питьевого водоснабжения.

  2. Системы водоснабжения и их сравнительная характеристика. Гигиенические требования к устройству и эксплуатации местных источников водоснабжения.

  3. Гигиенические требования к качеству питьевой воды. Показатели безопасности воды в эпидемиологическом отношении и безвредности химического состава. Принципы нормирования показателей качества питьевой воды.

  4. Гигиенические требования к качеству питьевой воды. Органолептические свойства воды, принципы нормирования.

  5. Источники загрязнения питьевой воды вредными химическими веществами и патогенными микроорганизмами. Процессы самоочищения водоемов.

  6. Методы и способы улучшения качества питьевой воды. Санитарная охрана водоисточников.

  7. Обеззараживание питьевой воды: физические и химические методы.

ВСЕ ПО ВОДЕ!

Для целей водоснабжения могут быть использованы открытые водоемы, подземные и атмосферные воды.

Выбор источника водоснабжения устанавливается на основании следующих данных:

характеристика санитарного состояния места размещения водозаборных сооружений и прилегающей территории (для подземных источников водоснабжения);

характеристика санитарного состояния места водозабора и самого источника выше и ниже водозабора (для поверхностных источников водоснабжения);

оценка качества воды источника водоснабжения;

определение степени природной и санитарной надежности и прогноза санитарного состояния.

Пригодность источника для хозяйственно-питьевого водоснабжения и места водозабора устанавливают органы государственной санитарно-эпидемиологической службы министерств здравоохранения.

При оценке пригодности места водозабора и источника в целом учитываются следующие данные:

краткая характеристика населенного пункта;

ситуационный план, на котором обозначено место предполагаемого водозабора;

схема проектируемого централизованного хозяйственнопитьевого водоснабжения;

указание суточного уровня водопотребления с расчетом на перспективу;

данные о качестве воды источника.

Помимо этих общих положений, отдельно дается оценка пригодности места водозабора для поверхностных и подземных водоисточников, а именно:

при подземном водоисточнике необходимо учитывать гидрогеологическую характеристику используемого водоносного горизонта, наличие и характер перекрывающих его слоев и степень их водонепроницаемости, зону питания, соответствие дебита источника намеченному водоотбору, санитарную характеристику местности в районе водозабора, существующие и потенциальные источники загрязнения;

при выборе водоисточника из поверхностных водоемов необходимо обращать внимание на гидрологические данные, минимальные и средние расходы воды, соответствие их предполагаемому водозабору, санитарную характеристику бассейна, наличие промышленных, бытовых, сельскохозяйственных и других объектов, их развитие в будущем.

Открытые водоемы

Открытые водоемы (наземные воды) делятся на естественные (реки, озера) и искусственные (водохранилища, каналы). Их формирование происходит главным образом за счет поверхностного стока, атмосферных, талых, ливневых вод и в меньшей степени за счет питания подземными водами. У некоторых водоемов питание может быть смешанным.

Характерной чертой открытых водоемов является наличие большой водной поверхности, которая непосредственно соприкасается с атмосферой и находится под воздействием лучистой энергии солнца, что создает благоприятные условия для развития водной флоры и фауны, активного течения процессов самоочищения. Однако вода открытых водоемов подвержена опасности загрязнения различными химическими веществами и микроорганизмами, особенно вблизи крупных населенных пунктов и промышленных предприятий.

С целью водоснабжения наиболее часто используются реки, которые представляют собой естественные стоки родников, болот, озер, ледников. Речные воды характеризуются большим количеством взвешенных веществ, низкой прозрачностью и большой микробной обсемененностью.

Озера и пруды представляют собой различной величины и формы котлованы, пополняющиеся водой главным образом за счет атмосферных осадков, родников. На дне образуются значительные илистые отложения за счет выпадения взвешенных частиц. Пруды и озера могут бьггь использованы для водоснабжения в небольших сельских населенных пунктах лишь в том случае, если подземные воды залегают очень глубоко. Эти водоисточники менее пригодны для питьевых целей, так как значительно подвержены загрязнению и обладают слабовыражен - ной способностью самоочищения. В них часто наблюдается цветение за счет развития водорослей, что ухудшает органолептические свойства воды. Эти воды небезопасны в эпидемиологическом отношении.

Искусственные водохранилища (или зарегулированные водоемы) создаются путем сооружения плотин, задерживающих водоотгок. Чаще всего имеют комплексное назначение (промышленное, энергетическое, для целей водоснабжения и др.). Устраиваются на реках, что сопровождается затоплением прилегающих огромных территорий. Качество воды в таких водохранилищах в значительной мере зависит от состава речных, талых и грунтовых вод, участвующих в их формировании.

Большое влияние на качество воды в водохранилище, особенно в первые годы его эксплуатации, оказывает санитарная подготовка его ложа (дна). Только полная и тщательная санитарная обработка всей затапливаемой территории, удаление растительности, уборка и дезинфекция земельного участка, занимаемого населенным пунктом, особенно кладбищ, больниц, скотомогильников и др., могут гарантировать эпидемиологическую безопасность и хорошие органолептические свойства воды. В условиях застойного режима, особенно летом, наблюдается "цветение" водохранилищ за счет развития сине-зеленых водорослей. Продукты распада водорослей (аммиак, индол, скатол, фенолы) ухудшают органолептические свойства воды.

Открытые водоемы характеризуются непостоянством химического и бактериального состава, резко меняющегося в зависимости от сезонов года и атмосферных осадков. Они отличаются небольшим содержанием солей и значительным количеством взвешенных и коллоидных веществ.

При оценке открытых источников водоснабжения большое внимание уделяется флоре и фауне водоемов, так как известно, что в водоеме может находиться большое количество низших растений и животных, влияющих на качество воды. Вследствие этого водная флора и фауна используются в качестве показательных организмов, чувствительных к изменению условий жизни водоема. Эти биологические организмы называются са - пробными (варгс« — гнилостный). Существуют четыре степени (зоны) сапробности: полисапробная, а-мезосапробная, р-мезо - сапробная и олигосапробная. Каждой зоне сапробности соответствуют свои условия жизни, степень загрязненности, содержание в воде органических веществ, кислорода, наличие животных и растительных форм (рис. 4.1).

Полисапробная зона характеризуется сильным загрязнением воды, отсутствием кислорода, восстановительными процессами. Окислительные процессы отсутствуют. Отмечается большое количество белковых веществ, распадающихся в анаэробных условиях. В полисапробных зонах флора и фауна крайне бедны. Обитает мало видов и преобладает один вид, наиболее устойчивый к этим условиям. Происходит интенсивное размножение микроорганизмов, их число измеряется многими сотнями тысяч и миллионами в 1 мл. Водные цветковые растения и рыбы отсутствуют.

а-Мезосапробная зона по степени загрязнения воды приближается к полисапробной, условия разложения белка в значительной степени анаэробные, но отмечаются и аэробные. Количество бактерий исчисляется сотнями тысяч в 1 мл. Цветковые растения редки, но имеются водоросли и простейшие.

Р-Мезосапробная зона имеет среднюю степень загрязнения. Окислительные процессы преобладают над восстановительными и поэтому вода не загнивает. Количество органических веществ сравнительно невелико, так как они минерализуются почти до конца. Число бактерий в 1 мл воды измеряется десятками тысяч. Появляются инфузории, разнообразные виды рыб.

Олигосапробная зона характеризуется практически чистой водой, пригодной для водоснабжения. В воде отсутствуют процессы восстановления, органические вещества полностью минерализованы, много кислорода. Число бактерий не превышает 1000 в 1 мл воды. Флора и фауна весьма разнообразны, интенсивно развиваются различные водоросли, появляются моллюски, ракообразные, насекомые. Много цветковых растений и рыб.

При санитарно-гигиенической оценке открытых водоемов большое значение имеют и другие исследования, в частности гельминтологические.

Подземные воды

Подземные воды образуются главным образом за счет фильтрации атмосферных осадков через почву. Небольшая часть их образуется в результате фильтрации воды открытых водоемов (рек, озер, водохранилищ и т. д.) через русло.

Накопление и движение подземных вод зависят от строения пород, которые по отношению к воде разделяются на водоупорные (водонепроницаемые) и водопроницаемые. Водоупорными породами являются гранит, глина, известняк; к водопроницаемым относятся песок, гравий, галечник, трещиноватые породы. Вода заполняет поры и трещины этих пород. Подземные воды по условиям залегания делятся на почвенные, грунтовые и меж - пластовые (рис. 4.2).

Почвенные воды (поверхностные, или верховодка) наиболее близко залегают к земной поверхности в первом водоносном горизонте, не имеют защиты в виде водоупорного слоя, поэтому состав их резко меняется в зависимости от гидрометеорологических условий. Больше всего почвенных вод накапливается весной, летом они высыхают, зимой промерзают, легко подвергаются загрязнению, так как находятся в зоне просачивания атмосферных вод, поэтому использовать почвенные воды с целью водоснабжения не следует.

Состояние почвенных вод может оказывать влияние на качество грунтовых вод, расположенных ниже почвенных.

Грунтовые воды располагаются в последующих водоносных горизонтах; они скапливаются на первом водонепроницаемом слое, не имеют водоупорного слоя сверху и поэтому между ними и почвенными водами происходит водообмен. Грунтовые воды безнапорные, их уровень в колодце устанавливается на уровне подземного слоя воды. Образуются они за счет просачивания атмосферных осадков и уровень вод подвержен большим колебаниям в различные годы и сезоны. Грунтовые воды отличаются более или менее постоянным составом и лучшим качеством, чем поверхностные. Фильтруясь через довольно значительный слой почвы, они становятся бесцветными, прозрачными, свободными от микроорганизмов. Глубина их залегания в различных местностях колеблется от 2 м до нескольких десятков метров. Грунтовые воды являются наиболее распространенными источниками водоснабжения в сельских местностях.

В предупреждении загрязнения грунтовых вод большую роль играет санитарная охрана почвы.

Забор воды производится с помощью колодцев (шахтные, трубчатые и др.). Некоторые из них иногда используются для небольших водопроводов.

В прибрежных местностях грунтовые воды могут иметь гидравлическую связь с водами рек и других открытых водоемов. В этих случаях происходят просачивание речной воды в грунтовый слой и увеличение количества грунтовой воды. Эти воды называются подрусловыми. Подрусловые воды иногда используются в питьевых целях путем устройства инфильтрационных колодцев. Однако вследствие связи с открытым водоемом состав воды в них непостоянен и менее надежен в санитарном отношении, чем в хорошо защищенных грунтовых слоях.

В местности с пересеченным рельефом на склонах гор или в глубине больших оврагов грунтовые воды могут выходить на поверхность в виде родников. Эти родники называются безнапорными, или нисходящими. Родниковая вода по составу и качеству не отличается от питающей ее грунтовой воды и может быть использована для целей водоснабжения.

Межпластовые воды представляют собой подземные воды, заключенные между двумя водонепроницаемыми породами. Они имеют как бы непроницаемую крышу и ложе, полностью заполняют пространство между ними и передвигаются под давлением. Поэтому такие воды благодаря напору снизу могут высоко подниматься в колодцах, а иногда самопроизвольно фонтанировать (артезианские воды). Водонепроницаемая кровля надежно изолирует их от просачивания атмосферных осадков и вышерасположенных грунтовых вод. Питание межпластовых вод происходит в местах выхода на поверхность водоносного слоя. Эти места часто находятся далеко от места пополнения основных запасов межпластовой воды. Вследствие глубокого залегания межпластовые воды имеют устойчивые физические свойства и химический состав. Малейшее колебание их качества можно рассматривать как признак санитарного неблагополучия. Загрязнение межпластовых вод происходит крайне редко при нарушении целости водоупорных слоев, а также при отсутствии надзора за старыми, уже используемыми скважинами. Межпластовые воды могут иметь естественный выход на поверхность в виде восходящих ключей или родников. Их образование связано с тем, что водоупорный слой, расположенный над водоносным, прерывается оврагом. Качество родниковой воды не отличается от питающих ее межпластовых вод.

Атмосферные осадки

Атмосферные осадки образуются в результате сгущения водяных паров атмосферы и выпадения их на землю в виде дождя, содержат небольшое количество солей кальция, магния и поэтому являются очень мягкими. В качестве источника водоснабжения атмосферные осадки используются редко, главным образом в безводных, засушливых местах, т. е. там, где нет открытых водоемов, а получение подземных вод затруднено вследствие их глубокого залегания. При использовании осадков для питьевых целей сбор их должен производиться с соблюдением санитарных правил, в чистые емкости, надежно защищенные от внешних загрязнений. Ввиду того что атмосфера промышленных городов может быть загрязнена различными кислотами, солями натрия, кальция, магния, сажей, пылью, микроорганизмами, атмосферные осадки могут загрязняться и становятся непригодными для питья.

Качество атмосферных осадков зависит также от климатических условий и от того, когда была собрана вода — во время обильных дождей или в период засухи.

Талые воды, образующиеся после таяния снега и льда, используют крайне редко в безводных местах. Загрязняются они так же, как атмосферные.

При выборе источников водоснабжения необходимо провести их сравнительную санитарно-гигиеническую оценку и решить этот вопрос конкретно, с учетом местных условий.

Исходя из основных гигиенических принципов, в качестве источника водоснабжения должен быть выбран тот, который в своем естественном состоянии более всего приближается к требованиями СанПиН 2.1.4.1074—01. Наиболее предпочтительным источником являются межпластовые артезианские воды, так как они настолько чисты, что не нуждаются в мероприятиях по очистке и обеззараживанию, требующих специальных сооружений, обслуживающего персонала, больших экономических затрат на строительство и эксплуатацию. Кроме того, они являются напорными, самоизливающимися, что также удобно и экономично. К сожалению, использование таких вод часто затрудняется вследствие большой глубины залегания, недостаточного дебита (особенно для крупных городов), технико-эко- номических и других трудностей.

Использование больших открытых водоемов (полноводные реки, водохранилища), несмотря на их опасность в эпидемиологическом отношении, наиболее целесообразно для водоснабжения большинства городов.

Очистка и обеззараживание их на современных хорошо оборудованных водопроводных станциях под контролем государственной санитарно-эпидемиологической службы и при тщательном соблюдении требований СанПиН 2.1.4.1074—01 создают гарантию чистоты воды в эпидемиологическом и санитарно - гигиеническом отношении.

Все возрастающая потребность больших городов в питьевой и хозяйственной воде удовлетворяется в настоящее время за счет создания системы водохранилищ, а также переброски речной воды.

В перспективном водоснабжении городов переброска вод будет играть значительную роль. Не исключено также использование опресненной (морской) воды.

При невозможности их применения, учитывая качество воды, водоисточники следует выбирать в такой последовательности: межпластовые безнапорные, грунтовые, открытые водоемы.

В зависимости от класса "Источника" устанавливается соответствующая технологическая схема обработки воды.

4.2. Системы водоснабжения, их санитарно - гигиеническая характеристика

В настоящее время используют 2 системы водоснабжения:

централизованная, при которой вода подается в жилые дома, учреждения, предприятия бытового обслуживания и т. д.;

нецентрализованная (местная), при которой потребитель сам берет воду непосредственно из водоисточника.

4.8.1. Централизованное водоснабжение

Централизованное водоснабжение осуществляется путем устройства водопровода. Современный водопровод может применять воду открытых водоемов и воду подземных источников (межпластовую).

Централизованное водоснабжение из подземных водоисточников организуется главным образом для поселков городского типа, небольших городов и населенных пунктов. В некоторых крупных городах имеется комбинированная система водоснабжения из подземных и поверхностных водоисточников. Преимущество водопровода из подземного водоисточника заключается в том, что отпадает необходимость подвергать воду очистке и обеззараживанию, так как она надежно защищена от загрязнения водоупорными слоями; водозабор расположен в самом населенном пункте или в непосредственной близости от него. Если подземные воды отвечают требованиям СанПиН 2.1.4.1074—01, они используются без обработки. При этом схема водопровода весьма проста (рис. 4.3). Он состоит из скважины, насосов первого подъема, поднимающих воду в водосборный резервуар, сборного (или запасного) резервуара, насоса второго подъема, который выкачивает воду из сборного резервуара и подает ее в разводящую сеть. По ходу разводящей сети устанавливается водонапорный резервуар.

Для забора воды сооружаются вертикальные скважины, горизонтальные водозаборы (галереи, трубчатые водосборы), каптажи выходов подземных вод.

Выбор типа водозабора определяется глубиной и условиями залегания подземных вод, характером пород, величиной давления в пласте, мощностью водоносного пласта и количеством воды.

Скважины (трубчатые колодцы) представляют собой вертикальные каналы, доходящие до водоносного слоя. По мере бурения, для того чтобы земля не осыпалась, в шахту вставляют обсадные кольца, укрепляющие ее стенки.

Из водоносного горизонта вода поступает в приемную часть скважины, снабженную фильтром. Он задерживает частицы породы из водоносного пласта. Устье скважины (наземная часть обсадной трубы) должно быть оборудовано герметично в целях предупреждения загрязнений. Для откачивания воды из скважины устанавливают насос. Наиболее целесообразно использование центробежного насоса, эрлифта (воздушные водоприемники и др.).

Из артезианских скважин воду собирают в подземных резервуарах запасной воды (рис. 4.4), которые должны быть устроены в соответствии с гигиеническими требованиями и в процессе эксплуатации быть безопасными в санитарном и эпидемиологическом отношении.

Горизонтальные водозаборы (рис. 4.5) состоят из водоприемной части, получающей воду из водоносного горизонта, отводящей части — для отвода забранной воды самотеком в водосборный колодец, и насосной станции. Сооружаются при небольшой мощности потока подземных вод и неглубоком залегании водоносного пласта.

Вода при использовании водопровода, основанного на горизонтальном водозаборе, менее надежна в санитарном и эпидемиологическом отношении, так как вследствие неглубокого залегания может легко загрязняться с поверхности. При употреблении такой воды для хозяйственно-питьевого водоснабжения ее следует подвергать обеззараживанию.

Каптажные устройства применяются для захвата подземных вод, выходящих на поверхность в виде родников. Забор воды из восходящего родника производится через дно каптажной камеры, из нисходящего — через отверстие в стене камеры. При устройстве каптажа необходимо соблюдать санитарные требования. Прежде всего прием воды в камеру должен быть оборудован фильтром для того, чтобы частицы породы не проникали в воду и не загрязняли ее. Камера должна быть защищена от поверхностных загрязнений, промерзания и затопления поверхностными водами. Для этого следует оборудовать каптажную камеру водоотводными трубами, укрепить ее, замостить вокруг территорию водонепроницаемыми материалами.

Если качество воды при ее каптировании с целью хозяйственно-питьевого водоснабжения не соответствует СанПиН

2.1.4.1074— 01, необходимо предусмотреть соответствующую обработку перед подачей ее в водопроводную сеть.

Централизованное водоснабжение из открытых водоемов. Оно организуется путем сооружения водопроводной сети, состоящей из:

водозаборных сооружений;

сооружения для улучшения качества воды (главным образом для очистки и обеззараживания);

распределительной сети.

Весь комплекс сооружений до распределительной сети называется головными сооружениями водопровода (рис. 4.7).

Для забора воды из открытого водоема пользуются специальным приемником. Месторасположение приемного отверстия трубы должно быть тщательно выбрано и максимально удалено от берега, поверхности и дна водоема, что устраняет опасность загрязнения воды непосредственно в момент ее забора. Приемник может быть устроен в виде берегового колодца или ковша. Далее при помощи насосов первого подъема вода подается на очистные сооружения, где улучшаются ее свойства.

Основной задачей обработки воды на водопроводной станции является улучшение ее органолептических свойств за счет освобождения от взвешенных и коллоидных примесей, уничтожения микроорганизмов для создания гарантии безопасности в эпидемиологическом отношении, а также изменение ее органолептических и химических свойств, если в этом есть необходимость (дезодорация, фторирование, обезжелезивание, умягчение, опреснение и др.).

Обработка воды на водопроводной станции осуществляется в несколько этапов.

4.8.2. Методы улучшения качества воды

Использование природных вод открытых водоемов, а иногда и подземных вод в целях хозяйственно-питьевого водоснабжения практически невозможно без предварительного улучшения свойств воды и ее обеззараживания. Чтобы качество воды соответствовало гигиеническим требованиям, применяют предварительную обработку, в результате которой вода освобождается от взвешенных частиц, запаха, привкуса, микроорганизмов и различных примесей. Такое улучшение свойств воды достигается на водопроводных станциях.

Для улучшения качества воды применяются следующие методы: 1) очистка — удаление взвешенных частиц; 2) обеззараживание — уничтожение микроорганизмов; 3) специальные методы улучшения органолептических свойств воды, умягчение, удаление некоторых химических веществ, фторирование и др.

Очистка воды. Очистка является важным этапом в общем комплексе методов улучшения качества воды, так как улучшает ее физические и органолептические свойства. При этом в процессе удаления из воды взвешенных частиц удаляется и значительная часть микроорганизмов, в результате чего полная очистка воды позволяет легче и экономичнее осуществлять обеззараживание. Очистка осуществляется механическим (отстаивание), физическим (фильтрование) и химическим (коагуляция) методами.

Отстаивание, при котором происходит осветление и частичное обесцвечивание воды, осуществляется в специальных сооружениях — отстойниках. Используются две конструкции отстойников: горизонтальные и вертикальные. Принцип их действия состоит в том, что благодаря поступлению через узкое отверстие и замедленному протеканию воды в отстойнике основная масса взвешенных частиц оседает на дно. Процесс отстаивания в отстойниках различной конструкции продолжается в течение 2— 8 ч. Однако мельчайшие частицы, в том числе значительная часть микроорганизмов, не успевают осесть. Поэтому отстаивание нельзя рассматривать как основной метод очистки воды.

Фильтрация — процесс более полного освобождения воды от взвешенных частиц, заключающийся в том, что воду пропускают через фильтрующий мелкопористый материал, чаще всего через песок с определенным размером частиц. Фильтруясь, вода оставляет на поверхности и в глубине фильтрующего материала взвешенные частицы. На водопроводных станциях фильтрация применяется после коагуляции. В санитарной практике используются медленные и быстрые фильтры, фильтр АКХ (Академии коммунального хозяйства).

В настоящее время начали применяться кварцево-антрацитовые фильтры, значительно увеличивающие скорость фильтрации.

Для предварительной фильтрации воды используются микрофильтры для улавливания зоопланктона — мельчайших водных животных, и фитопланктона — мельчайших водных растений. Эти фильтры устанавливают перед местом водозабора или перед очистными сооружениями.

Коагуляция представляет собой химический метод очистки воды. Преимущество этого метода заключается в том, что он позволяет освободить воду от загрязнений, находящихся в виде взвешенных частиц, не поддающихся удалению с помощью отстаивания и фильтрации. Сущность коагуляции заключается в добавлении к воде химического вещества — коагулянта, способного реагировать с находящимися в ней бикарбонатами. В результате этой реакции образуются крупные, довольно тяжелые хлопья, несущие положительный заряд. Оседая вследствие собственной тяжести, они увлекают за собой находящиеся в воде во взвешенном состоянии частицы загрязнений, заряженные отрицательно, и тем самым способствуют довольно быстрой очистке воды. За счет этого процесса вода становится прозрачной, улучшается показатель цветности.

В качестве коагулянта в настоящее время наиболее широко применяется сульфат алюминия, образующий с бикарбонатами воды крупные хлопья гидроксида алюминия. Для улучшения процесса коагуляции используются высокомолекулярные флоккулянты: щелочной крахмал, флоккулянты ионного типа, активизированная кремниевая кислота и другие синтетические препараты, производные акриловой кислоты, в частности полиакриламид (ПАА).

В настоящее время в водопроводной системе применяется установка, заменяющая весь комплекс очистных сооружений обычного типа и работающая по схеме: коагуляция — отстаивание — фильтрация. Она называется контактным осветлителем и представляет собой бетонный резервуар, заполненный гравием и песком на высоту 2,3—2,6 м. Вода подается через систему труб в нижнюю часть осветлителя, а коагулянт вводится непосредственно в трубопровод перед поступлением воды в осветлитель. Коагуляция происходит в нижних крупнозернистых частях осветлителя, а в верхних задерживаются хлопья коагулянта и другие взвешенные вещества.

Обеззараживание. Уничтожение микроорганизмов является последним завершающим этапом обработки воды, обеспечивающим ее эпидемиологическую безопасность. Для обеззараживания воды применяются химические (реагентные) и физические (безреа - гентные) методы. В лабораторных условиях для небольших объемов воды может быть использован механический метод.

Химические (реагентные) методы обеззараживания основаны на добавлении к воде различных химических веществ, вызывающих гибель находящихся в воде микроорганизмов. Эти методы достаточно эффективны. В качестве реагентов могут быть использованы различные сильные окислители: хлор и его соединения, озон, йод, перманганат калия, некоторые соли тяжелых металлов, серебро.

В санитарной практике наиболее надежным и испытанным способом обеззараживания воды является хлорирование. На водопроводных станциях оно производится при помощи газообразного хлора и растворов хлорной извести. Кроме этого, могут использоваться такие соединения хлора, как гипохлорат натрия, гипохлорит кальция, двуокись хлора.

Механизм действия хлора заключается в том, что при добавлении его к воде он гидролизуется, в результате чего происходит образование хлористоводородной и хлорноватистой кислот:

С12 + Н20 = НС1 + НОС1.

Хлорноватистая кислота в воде диссоциирует на ионы водорода (Н) и гипохлоритные ионы (ОС1), которые наряду с диссоциированными молекулами хлорноватистой кислоты обладают бактерицидным свойством. Комплекс (НОС1 + ОС1) называется свободным активным хлором.

Бактерицидное действие хлора осуществляется главным образом за счет хлорноватистой кислоты, молекулы которой малы, имеют нейтральный заряд и поэтому легко проходят через оболочку бактериальной клетки. Хлорноватистая кислота воздействует на клеточные ферменты, в частности на ЗН-группы, нарушает обмен веществ микробных клеток и способность микроорганизмов к размножению. В последние годы установлено, что бактерицидный эффект хлора основан на угнетении ферментов — катализаторов окислительно-восстановительных процессов, обеспечивающих энергетический обмен бактериальной клетки.

Обеззараживающее действие хлора зависит от многих факторов, среди которых доминирующими являются биологические особенности микроорганизмов, активность действующих препаратов хлора, состояние водной среды и условия, в которых производится хлорирование.

Процесс хлорирования зависит от стойкости микроорганизмов. Наиболее устойчивыми являются спорообразующие. Среди неспоровых отношение к хлору различное, например брюшнотифозная палочка менее устойчива, чем палочка паратифа, и т. д. Важным является массивность микробного обсеменения: чем она выше, тем больше хлора нужно для обеззараживания воды. Эффективность обеззараживания зависит от активности используемых хлорсодержащих препаратов. Так, газообразный хлор более эффективен, чем хлорная известь.

Большое влияние на процесс хлорирования оказывает состав воды; процесс замедляется при наличии большого количества органических веществ, так как большее количество хлора уходит на их окисление, и при низкой температуре воды. Существенным условием хлорирования является правильный выбор дозы. Чем выше доза хлора и чем продолжительнее его контакт с водой, тем более высоким будет обеззараживающий эффект.

Хлорирование производится после очистки воды и является заключительным этапом ее обработки на водопроводной станции. Иногда для усиления обеззараживающего эффекта и для улучшения коагуляции часть хлора вводят вместе с коагулянтом, а другую часть, как обычно, после фильтрации. Такой метод называется двойным хлорированием.

Различают обычное хлорирование, т. е. хлорирование нормальными дозами хлора, которые устанавливаются каждый раз опытным путем, суперхлорирование, т. е. хлорирование повышенными дозами.

Хлорирование нормальными дозами применяется в обычных условиях на всех водопроводных станциях. При этом большое значение имеет правильный выбор дозы хлора, что обусловливается степенью хлорпоглощаемости воды в каждом конкретном случае.

Для достижения полного бактерицидного эффекта определяется оптимальная доза хлора, которая складывается из количества активного хлора, которое необходимо для: а) уничтожения микроорганизмов; б) окисления органических веществ и количества хлора, которое должно остаться в воде после ее хлорирования для того, чтобы служить показателем надежности хлорирования. Это количество называется свободным остаточным хлором. Его норма 0,3—0,5мг/л, при остаточном связанном хлоре 0,8—1,2 мг/л. Необходимость нормирования этих количеств связана с тем, что при наличии свободного остаточного хлора менее 0,3 мг/л его может быть недостаточно для обеззараживания воды, а при дозах выше 0,5 мг/л вода приобретает неприятный специфический запах хлора.

Главными условиями эффективного хлорирования воды являются перемешивание ее с хлором, контакт между обеззараживаемой водой и хлором в течение 30 мин в теплое время года и 60 мин в холодное время.

На крупных водопроводных станциях для обеззараживания воды применяется газообразный хлор. Для этого жидкий хлор, доставляемый на водопроводную станцию в цистернах или баллонах, перед применением переводится в газообразное состояние в специальных установках — хлораторах, с помощью которых обеспечиваются автоматическая подача и дозирование хлора. Наиболее часто хлорирование воды производится 1 % раствором хлорной извести. Хлорная известь представляет собой продукт взаимодействия хлора и гидроксида кальция в результате реакции:

2Са(ОН)2 + 2С12 = Са(ОС1)2 + СаС12 + 2Н20.

Техническая хлорная известь содержит обычно около 35 % активного хлора. При хранении ее в сыром помещении, на свету и при высокой температуре она разлагается и значительно снижает свою активность. Для обеззараживания воды допускается использование хлорной извести, содержащей не менее 25 % активного хлора. Поэтому, прежде чем использовать хлорную известь для хлорирования воды, необходимо определить в ней процентное содержание активного хлора.

Суперхлорирование (гиперхлорирование) воды проводится по эпидемиологическим показаниям или в условиях, когда невозможно обеспечить необходимый контакт воды с хлором (в течение 30 мин). Обычно оно применяется в военно-полевых условиях, экспедициях и других случаях и производится дозами, в 5—10 раз превышающими хлорпоглощаемость воды, т. е. 10— 20 мг/л свободного хлора. Время контакта между водой и хлором при этом сокращается до 15—10 мин. Суперхлорирование имеет ряд преимуществ. Основными из них являются значительное сокращение времени хлорирования, упрощение его техники, так как нет необходимости определять остаточный хлор и дозу, и возможность обеззараживания воды без предварительного освобождения ее от мути и осветления. Недостатком гиперхлорирования является сильный запах хлора, но его можно устранить добавлением к воде тиосульфата натрия, активированного угля, сернистого ангидрида и других веществ (дехлорирование).

На водопроводных станциях иногда проводят хлорирование с преаммонизацией. Этот метод применяется в тех случаях, когда обеззараживаемая вода содержит фенол или другие вещества, которые придают ей неприятный запах. Для этого в обеззараживаемую воду вначале вводят аммиак или его соли, а затем, через 1—2 мин, — хлор. При этом образуются хлорамины, обладающие сильным бактерицидным свойством.

К химическим методам обеззараживания воды относится озонирование. Озон является нестойким соединением. В воде он разлагается с образованием молекулярного и атомарного кислорода, с чем связана сильная окислительная способность озона. В процессе его разложения образуются свободные радикалы ОН и Н02, обладающие выраженными окислительными свойствами. Озон имеет высокий окислительно-восстановительный потенциал, поэтому его реакция с органическими веществами, находящимися в воде, происходит более полно, чем у хлора. Механизм обеззараживающего действия озона аналогичен действию хлора: являясь сильным окислителем, озон повреждает жизненно важные ферменты микроорганизмов и вызывает их гибель. Имеются предположения, что он действует как протоплазматический яд.

Преимущество озонирования перед хлорированием заключается в том, что при этом способе обеззараживания улучшаются вкус и цвет воды, поэтому озон может быть использован одновременно для улучшения ее органолептических свойств. Озонирование не оказывает отрицательного влияния на минеральный состав и pH воды. Избыток озона превращается в кислород, поэтому остаточный озон не опасен для организма и не влияет на органолептические свойства воды. Контроль за озонированием менее сложен, чем за хлорированием, так как озонирование не зависит от таких факторов, как температура, pH воды и т. д. Для обеззараживания воды необходимая доза озона в среднем равна 0,5—6 мг/л при экспозиции 3—5 мин. Озонирование производится при помощи специальных аппаратов — озонаторов.

При химических способах обеззараживания воды используют также олигодинамические действия солей тяжелых металлов (серебра, меди, золота). Олигодинамическим действием тяжелых металлов называется их способность оказывать бактерицидный эффект в течение длительного срока при крайне малых концентрациях. Механизм действия заключается в том, что положительно заряженные ионы тяжелых металлов вступают в воде во взаимодействие с микроорганизмами, имеющими отрицательный заряд. Происходит электроадсорбция, в результате которой они проникают в глубь микробной клетки, образуя в ней альбуминаты тяжелых металлов (соединения с нуклеиновыми кислотами), в результате чего микробная клетка погибает. Данный метод обычно применяется для обеззараживания небольших количеств воды.

Перекись водорода давно известна как окислитель. Ее бактерицидное действие связано с выделением кислорода при разложении. Метод применения перекиси водорода для обеззараживания воды в настоящее время еще полностью не разработан.

Химические, или реагентные, способы обеззараживания воды, основанные на добавлении к ней того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство этих веществ отрицательно влияет на состав и органолептические свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распространяется на все формы микроорганизмов. Все это явилось причиной разработки физических методов обеззараживания воды, имеющих ряд преимуществ по сравнению с химическими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, вследствие чего обладают более широким диапазоном бактерицидного действия. Для обеззараживания необходим небольшой период времени.

Наиболее разработанным и изученным в техническом отношении методом является облучение воды бактерицидными (ультрафиолетовыми) лампами. Наибольшим бактерицидным свойством обладают УФ-лучи с длиной волны 200—280 нм; максимум бактерицидного действия приходится на длину волны 254—260 нм. Источником излучения служат аргонно-ртутные лампы низкого давления (БУВ) и ртутно-кварцевые лампы (ПРК и РКС).

Для обеззараживания воды применяются специальные установки (напорные и безнапорные). Для обеззараживания большого объема воды используется установка ОВ-АКХ-1 большой производительности с применением бактерицидных ламп ПРК.

На небольших водопроводах используются аргонно-ртутные лампы низкого давления (БУВ-15, БУВ-30, БУВ-ЗОП). Обеззараживание воды наступает быстро, в течение 1—2 мин. При обеззараживании воды УФ-лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздействию хлора. Применение бактерицидных ламп не всегда возможно, так как на эффект обеззараживания воды УФ-лучами влияют мутность, цветность воды, содержание в ней солей железа. Поэтому, прежде чем обеззараживать воду таким способом, ее необходимо тщательно очистить.

Из всех имеющихся физических методов обеззараживания воды наиболее надежным является кипячение. В результате кипячения в течение 3—5 мин погибают все имеющиеся в ней микроорганизмы, а после 30 мин вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Его можно использовать в быту, детских учреждениях и т. д. Недостатком кипячения является ухудшение вкуса воды, наступающего в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

К физическим методам обеззараживания воды относится использование импульсного электрического разряда, ультразвука и ионизирующего излучения. В настоящее время эти методы широкого практического применения не находят.

Необходимость обеззараживания индивидуальных запасов воды (во фляге и т. д.) возникает в полевых, экспедиционных и других условиях. Для этой цели применяются главным образом химические методы. Обеззараживание производится специальными таблетками пантоцида (парадихлорсульфамидбензойная кислота), изготовленными из органических хлораминов. Одна таблетка должна содержать не менее 3 мг активного хлора. Обеззараживание воды наступает в течение 30 мин. Недостатком этих таблеток является продолжительное их растворение. Они плохо обеззараживают воду, содержащую гуминовые и другие органические вещества. Кроме таблеток пантоцида, применяются персульфатные таблетки, перекисные соединения в сочетании с солями серебра и меди, бисульфатпантоцидные таблетки и йодорганические соединения.

Специальные способы улучшения качества воды. Помимо основных методов очистки и обеззараживания воды, в некоторых случаях возникает необходимость производить специальную ее обработку. В основном эта обработка направлена на улучшение минерального состава воды и ее органолептических свойств.

Дезодорация — удаление посторонних запахов и привкусов. Необходимость проведения такой обработки обусловливается наличием в воде запахов, связанных с жизнедеятельностью микроорганизмов, грибов, водорослей, продуктов распада и разложения органических веществ. С этой целью применяются такие методы, как озонирование, углевание, хлорирование, обработка воды перманганатом калия, перекисью водорода, фторирование через сорбционные фильтры, аэрация.

Дегазация воды — удаление из нее растворенных дур- нопахнущих газов. Для этого применяется аэрация, т. е. разбрызгивание воды на мелкие капли в хорошо проветриваемом помещении или на открытом воздухе, в результате чего происходит выделение газов.

Умягчение воды — полное или частичное удаление из нее катионов кальция и магния. Умягчение проводится специальными реагентами или при помощи ионообменного и термического методов.

Опреснение (обессоливание) воды чаще производится при подготовке ее к промышленному использованию. Частичное опреснение воды осуществляется для снижения содержания в ней солей до тех величин, при которых воду можно использовать для питья (ниже 1000 мг/л). Опреснение достигается дистилляцией воды, которая производится в различных опреснителях (вакуумные, многоступенчатые, гелиотермические), ио - нитовых установках, а также электрохимическим способом и методом вымораживания.

Обезжелезивание — удаление из воды железа производится аэрацией с последующим отстаиванием, коагулированием, известкованием, катионированием. В настоящее время разработан метод фильтрования воды через песчаные фильтры.

Обесфторивание — освобождение природных вод от избыточного количества фтора. С этой целью применяют метод осаждения, основанный на сорбции фтора осадком гидроокиси алюминия и других адсорбентов.

При недостатке в воде фтора ее фторируют. В случае загрязнения воды радиоактивными веществами ее подвергают дезактивации, т. е. удалению радиоактивных веществ.

4.8.3. Нецентрализованное водоснабжение

Местное, или нецентрализованное, водоснабжение распространено главным образом в сельской местности. Местное водоснабжение менее благоприятно в санитарном отношении, так как при нем создаются условия для загрязнения воды при ее получении и транспортировке. В небольших сельских населенных пунктах широко используются грунтовые воды. Для их забора сооружают различного типа колодцы, каптированные родники.

Каптаж (захват) родника представляет собой специальную камеру для сбора воды, изготовленную из бетона, железобетона, кирпича, камня или дерева. Для того чтобы вода в каптаже не поднималась выше необходимого уровня, устраиваются переливные трубы, отводящие избыток воды. Каптаж должен быть благоустроен в санитарном отношении, водонепроницаем, площадка вокруг него защищена, вокруг каптажной камеры сделан "глиняный замок", препятствующий протеканию с поверхности загрязненных вод. Воду из каптажа необходимо забирать только из водовода, удаленного максимально от сборного резервуара.

Другим способом получения воды при местном водоснабжении являются колодцы различного типа. Большое значение при устройстве колодца любого типа имеет выбор места его расположения. Колодец должен находиться на возвышенном чистом участке, на расстоянии не менее 25 м от уборных, мусоросборников, скотных дворов и других возможных источников загрязнения. Колодцы не следует располагать в местах большого скопления людей и животных.

Наиболее распространенным типом колодца является шахтный (рис. 4.8), представляющий собой шахту площадью около 1 м2, доходящую до второго водоносного слоя. Шахту укрепляют деревянными или бетонными кольцами, которые возвышаются над поверхностью земли на 1 м. Дно колодца покрывается слоем крупного песка, затем слоем мелкого песка, а сверху — крупного гравия толщиной 30 см. Вокруг колодца устраивается "глиняный замок", представляющий собой слой глины шириной 1 м и глубиной 1,5 м, препятствующий проникновению в колодец различных загрязнений с поверхности. Площадка вокруг колодца должна быть вымощена камнем или покрыта асфальтом, по краю вырыты водоотводные канавки. Колодец снабжается крышкой. Воду следует брать общественным ведром или откачивать насосом.

Кроме шахтных колодцев, при местном водоснабжении пользуются трубчатыми, которые могут обеспечить получение воды из глубоких слоев почвы, хорошо защищенных от проникновения загрязнений и поэтому более благополучных в санитарном отношении. Колодец периодически следует очищать. Если колодезная вода по бактериологическим показателям не соответствует санитарным требованиям, проводится ее хлорирование в специальной таре или непосредственно в колодце.

Эффективен метод обеззараживания воды в колодце при помощи дозирующих хлорсодержащих патронов, которые представляют собой цилиндрический сосуд из пористой керамики емкостью 250, 500 и 1000 мл. Патрон наполняют хлорсодержащим материалом (хлорная известь, гипохлорит кальция), закрывают керамической пробкой и подвешивают в колодце на 0,5 м ниже уровня воды. Пористые стенки патрона пропускают хлорсодержащее вещество в воду, в результате чего происходит ее обеззараживание.

Необходимо ежегодно после ремонта дезинфицировать сам колодец. Для этого предварительно выкачивают воду из колодца, очищают его стенки и дно от осадка и загрязнений, обмывают 3—5 % раствором хлорной извести. Затем колодец наполняют водой, добавляют в нее 1 % раствор хлорной извести из расчета одно ведро на 1 м3 воды, перемешивают и оставляют на 10—12 ч. После этого воду выкачивают до тех пор, пока она не утратит запаха хлора.

Источником местного водоснабжения могут служить пруды. В этом случае устраиваются колодцы, в которые вода фильтруется через береговой грунт.

Большое внимание уделяется водоснабжению полевых станов, так как в период сельскохозяйственных работ летом, в жаркое время, оно должно быть бесперебойным и качественным. Каждый полевой стан оборудуется пунктом водоснабжения, который представляет собой источник воды и тару для хранения ее запасов. При отсутствии источника водоснабжения на территории полевого стана воду подвозят к нему в бочках или автоцистернах. Тара должна быть хорошо закрыта, содержаться в чистоте и периодически хлорироваться. Храниться тара с водой должна в месте, недоступном для солнечных лучей. На каждом тракторе или комбайне должен быть бачок с кипяченой водой.

  1. Понятие о рациональном питании. Основные теории рационального питания (А.А.Покровский, А.М.Уголев). Классификация пищевых веществ.

  2. Физиологические нормы питания населения в зависимости от возраста, пола, профессий, климатических условий. Особенности организации детского питания.

В основу физиологических норм питания положены дифференцированные подходы в зависимости от профессиональной деятельности, т. е. энергетических трат, возраста, пола, физиологического состояния и климатических условий проживания. Физиологические нормы питания строятся исходя из энергетических трат населения.

По энергетическим тратам все трудоспособное население делится на 5 групп.

5 групп интенсивности труда

К первой группе относятся преимущественно работники умственного труда, руководители предприятий, инженерно-технические работники, медицинские работники, кроме врачей-хирургов, медицинских сестер и санитарок. К этой группе относятся также воспитатели и педагоги. Энергетические траты этой группы находятся в пределах от 2550 до 2800 ккал.

Эта группа подразделяется на три возрастных подгруппы. Выделяются группы 18—29 лет, 30—39 лет и 40—59 лет.

Вторая группа населения по интенсивности труда представлена работниками, занятыми легким физическим трудом. Это инженерно-технические работники, труд которых связан с некоторыми физическими усилиями, работники радиоэлектронной, часовой промышленности, связи и телеграфа, сферы обслуживания, обслуживающие автоматизированные процессы, агрономы, зоотехники, медсестры и санитарки. Энергетические затраты второй группы составляют 2750—3000 ккал. Эта группа, как первая, делится на 3 возрастные категории.

Третья группа населения по интенсивности труда представлена работниками, занятыми средним по тяжести трудом. Это слесари, токари, наладчики, химики, водители средств транспорта, водники, текстильщики, железнодорожники, врачи-хирурги, полиграфисты, бригадиры тракторных и полеводческих бригад, продавцы продовольственных магазинов и др. Энергетические траты этой группы составляют 2950—3200 ккал.

К четвертой группе относятся работники тяжелого физического труда – работники-механизаторы, сельскохозяйственные работники, работники газодобывающей и нефтяной промышленности, металлурги и литейщики, работники деревообрабатывающей промышленности, плотники и другие. Для них энергозатраты составляют 3350—3700 ккал.

Пятая группа – работники, занятые особо тяжелым физическим трудом: работники подземных шахт, отбойщики, каменщики, вальщики леса, сталевары, землекопы, грузчики, бетонщики, труд которых немеханизирован, и др. В эту группу входят представители только мужского пола, так как законодательством запрещается женская работа с такой интенсивностью труда. Это особо тяжелый физический труд, потому энергозатраты здесь находятся в пределах от 3900 до 4300 ккал.

Существуют физиологические нормы питания детей.

В целом для взрослого трудоспособного населения потребности в белках составляют в среднем 100—120 г ± 10 %. Такие же потребности взрослого организма в жирах – от 80 до 150 г и потребности в углеводах – 350—600 г в сутки.

В зависимости от энергетических трат и условий труда физиологические нормы питания предусматривают необходимый уровень обеспечения организма витаминами, минеральными солями, макро– и микроэлементами.

Потребность детей и подростков в необходимых калоражах рациона определяется следующими показателями. Пищевая ценность рациона детей в возрасте от 7 до 10 составляет 2300 ккал, 11—13-летних мальчиков – 2700 ккал, девочек – 2450 ккал, юношей и девушек 17 лет, соответственно, 2900 и 2600 ккал. Существуют рекомендуемые суточные потребности в белках, жирах и углеводах для детей и подростков в разных возрастных групп. Для детей в возрасте 7—10 лет потребность в белках составляет 70 г, жирах – 79 г (из них растительных – 15 г) и в углеводах – 330 г. Для мальчиков и девочек 11—13 лет соответственно в белках – 93 г (55 граммов животного происхождения), жирах – 93 (19 г. растительного происхождения) и углеводах – 370 г. Для девочек 11—13 лет – белках – 85 г (51 г животного происхождения), жирах – 85 г (17 г растительного происхождения) и углеводах – 340 г. Для юношей 14—17 лет потребности в белках приближаются к потребностям взрослого населения и составляют 100 г (из них белков животного происхождения – 60 г), в жирах – 100 г (из них растительного происхождения – 20 г) и углеводах – 400 г. Для девушек 14—17 лет потребность в белках составляет 90 г (54 г животного происхождения), жирах – 90 г (18 г растительного происхождения), углеводах – 360 г в сутки.

Существует специальное положение о рациональном питании лиц, занятых физкультурой и спортом. Особое значение имеет питание для лиц с различными заболеваниями – лечебное питание. Для лиц, занятых в определенных производствах, где воздействуют определенные профессионально-вредные физические и химические факторы, используют лечебно-профилактическое питание. В целом вопрос по питанию должен решаться индивидуально. Каждый должен получать индивидуальное рациональное питание с учетом состояния здоровья. В мире существует понятие пищевого статуса человека. Это состояние здоровья в зависимости от питания.

  1. Заболевания, связанные с питанием. Профилактика алиментарных заболеваний

Недостаточное поступление белков с рационом приводит к распаду собственных белков организма, снижению как общей массы тела, так и массы отдельных внутренних органов, нарушениям в каталитической деятельности ферментов, гормональной дисфункции, поражению органов и систем (в первую очередь пищеварительной и кроветворной), снижению устойчивости организма к действию неблагоприятных факторов внешней среды. Избыток белка в рационесопровождается повышением содержания в организме токсичных промежуточных продуктов метаболизма, дополнительной нагрузкой на выделительную систему, усилением гнилостных процессов в кишечнике, повышению риска развития онкологических заболеваний.

Чрезмерное сокращение употребления жировых продуктов наиболее часто сопровождается дефицитом в рационе жирорастворимых витаминов, эссенциальных ненасыщенных жирных кислот, фосфолипидов, стеринов. Особенно следует отметить важность включения полиненасыщенных жирных кислот в адаптированные молочные смеси для детей, находящихся на искусственном вскармливании, поскольку их дефицит способен привести к различным нарушениям здоровья ребенка (задержка роста и развития, дерматиты, диспепсические расстройства и пр.). Увеличение жира в рационе (особенно за счет насыщенных жиров) приводит к ожирению, повышению риска развития сердечно-сосудистых и онкологических заболеваний.

Недостаточное поступление углеводов с пищей сопровождается усилением распада жиров и белков, что приводит к накоплению в организме токсических продуктов их катаболизма, развитию симптомов белковой недостаточности (кахексия, атрофические изменения эпителия слизистой желудочно-кишечного тракта и пр.). Избыточное поступление углеводовприводит к ожирению и другим обменным нарушениям (например, избыток сахара в рационе способствует развитию сахарного диабета). Отдельно стоит отметить роль пищевых волокон. Недостаточное количество пищевых волокон в рационе провоцирует целый ряд заболеваний (см. таблицу). Однако и избыток пищевых волокон опасен для здоровья человека, поскольку усвоение необходимых нутриентов снижается.

Заболевания, связанные с дефицитом в питании пищевых волокон

В последние десятилетия крайне актуальной является проблема дефицита микронутриентов в питании человека, в России наиболее распространены:

  • дефицит кальция, особенно у лиц пожилого возраста, что сопровождается развитием остеопороза и повышенной ломкостью костей;

  • дефицит железа, особенно для беременных женщин и детей раннего возраста, что сопровождается развитием анемии;

  • дефицит йода, особенно для детей в период интенсивного развития центральной нервной системы, что приводит к потере существенной доли интеллектуальных способностей в зрелом возрасте;

  • дефицит фтора, функция которого напрямую связана с формированием и здоровьем зубов, а также опорно-двигательного аппарата;

  • дефицит селена - важнейший антиоксидант, снижающий риск развития онкологических заболеваний, без которого невозможно нормальное функционирование репродуктивной системы человека и сексуальной активности;

  • дефицит цинка - минерал, имеющий особое значение для формирования и эффективной реализации половой функции, имеющий прямое отношение к формированию иммунитета, росту и развитию организма, заживлению ран и др. Некоторыми учеными высказывается мнение о том, что при дефиците цинка в питании детей и подростков повышается предрасположенность их к алкоголизму и наркомании;

Несмотря на то, что в настоящее время в развитых странах редко можно встретить классические примеры абсолютной недостаточности витаминов и минеральных соединений, значительное число ученых отмечают наличие у большей части населения (в том числе и России) так называемой «субнормальной» обеспеченности микронутриентами, т.е. когда отмечаются нарушения на клеточном уровне без развития выраженной клинической симптоматики. Опасность такого «субнормального» поступления микронутриентов заключается в снижении общей резистентности организма к действию неблагоприятных факторов внешней среды, повышению риска развития заболеваний, в т.ч. сердечно-сосудистых и онкологических. Значительно более редко встречаются состояния, связанные с избыточным поступлением микронутриентов (гипервитаминозы А и Д, отравления селеном, медью и пр.). Следует отметить важную антиоксидантную роль микронутриентов (витаминов С и Е, меди, полифенолов и др.).    Профилактика алиментарных заболеваний основана на рациональной организации питания с соблюдением рекомендуемой калорийности рациона, использованием разнообразных наборов продуктов, применением в необходимых случаях препаратов витаминов. Важную роль в борьбе с алиментарными заболеваниями играет обучение населения принципам и навыкам рационального питания. 

  1. Белки, их значение для организма и источники в питании. Заболевания белково-энергетической недостаточности.

Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма, справедливо назван протеином, показывающим первую его роль в питании. Роль белков в питании человека трудно переоценить. Сама жизнь является одним из способов существования белковых тел. Биологическая роль белков

Белок можно отнести к жизненно важным пищевым веществам, без которых невозможны жизнь, рост и развитие организма. Достаточность белка в питании и высокое его качество позволяют создать оптимальные условия внутренней среды для нормальной жизнедеятельности организма, его развития и высокой работоспособности. Белок является главной составной частью пищевого рациона, определяющей характер питания. На фоне высокого уровня белка отмечается наиболее полное проявление в организме биологических свойств других компонентов питания. Белки обеспечивают структуру и каталитические функции ферментов и гормонов, выполняют защитные функции, участвуют в обного иммунитета, участвуют в образовании тканевых белков, таких как миозин и актин, обеспечивающих мышечные сокращения, глобина, входящего в состав гемоглобина эритроцитов крови и выполняющего важнейшую функцию дыхания. Белок, образующий зрительный пурпур (родопсин) сетчатки глаза, обеспечивает нормальное восприятие света, и др.

Следует отметить, что белки определяют активность многих биологически активных веществ: витаминов, а также фосфолипидов, отвечающих за холестериновый обмен. Белки определяют активность тех витаминов, эндогенный синтез которых осуществляется из аминокислот. Например, из триптофана – витамина PР (никотиновая кислота), обмен метионина – связан с синтезом витамина U (метилметионин-сульфоний). Установлено, что белковая недостаточность может привести к недостаточности витамина С и биофлаваноидов (витамина Р). Нарушение в печени синтеза холина (группы витаминоподобных веществ) приводит к жировой инфильтрации печени.

При больших физических нагрузках, а также при недостаточном поступлении жиров и углеводов белки участвуют в энергетическом обмене организма.

Белки рациона определяют такие состояния, как алиментарная дистрофия, маразм, квашиоркор. Квашиоркор означает «отнятый от груди ребенок». Им заболевают дети, отнятые от груди и переведенные на углеводистое питание с резкой недостаточностью животного белка. Квашиоркор вызывает как стойкие необратимые изменения конституционального характера, так и изменения личности.

Наиболее тяжелые последствия в состоянии здоровья, нередко на всю жизнь, оставляет такой вид недостаточности питания, как алиментарная дистрофия, чаще всего возникающая при отрицательном энергетическом балансе, когда в энергетические процессы включаются не только пищевые химические вещества, поступающие с пищей, но и собственные, структурные белки организма. В алиментарной дистрофии выделяют отечную и безотечную формы с явлениями или без явлений витаминной недостаточности.

Может сложиться впечатление, что заболевания алиментарного характера возникают только при недостаточном поступлении белка в организм. Это не совсем так! При избыточном поступлении белка у детей первых трех месяцев жизни появляются симптомы дегидратации, гипертермии и явления обменного ацидоза, что резко увеличивает нагрузку на почки. Обычно это возникает, когда при искусственном вскармливании используют неадаптированные молочные смеси, негуманизированные типы молока.

Обменные нарушения в организме могут появиться и при несбалансированности аминокислотного состава поступающих белков.

Белки явл источником незаменимых аминокислот- строительный материал для роста и восстановления клеточных структур тканей. Количественная достаточность и биологическая ценность белка пищевого рациона создают оптимальную внутреннюю среду организма, необходимую для высокой функциональной способности его систем. Белки обеспечивают организм материалом для синтеза пищеварительных соков, гормонов, гемоглобина, витаминов и ферментов. Наиболее важной функцией белка явл пластическая, и питательная ценность белков пищи зависит от полноты использования их для синтетических целей, а это обуславливается аминокислотным составом. Существуют аминокислоты, синтез кот в организме невозможен, и они должны бать получены с пищей- это так называемые незаменимые а/ты: лейцин, изолейцин, лизин и др. Животного белка в рационе взрослого чел должно быть больше, чем растительного т.е не менее 55%. На 1кг взрослого чел при средней тяже сти труда необходимо 1,2-1,3г белка в сутки. Детям белка требуется больше, причем, чем моложе ребенок, тем потребность в белке выше.

Классификация и причины белково-энергетической недостаточности

Белково-энергетическая недостаточность бывает легкой, умеренной или тяжелой степени. Стадию устанавливают путем определения разницы в процентах реального и расчетного (идеального) веса пациента, соответствующего его росту, используя международные стандарты (норма, 90-110 %; легкая белково-энергетическая недостаточность, 85-90 %; умеренная, 75-85 %; тяжелая, менее 75 %).

Белково-энергетическая недостаточность может быть первичной или вторичной. Первичная белково-энергетическая недостаточность обусловлена неадекватным поступлением питательных веществ, а вторичная белково-энергетическая недостаточность является следствием различных расстройств или приема лекарственных препаратов, которые препятствуют использованию питательных веществ.

Первичная белково-энергетическая недостаточность

Во всем мире первичная белково-энергетическая недостаточность встречается главным образом у детей и пожилых лиц, т. е. у тех, у кого ограничены возможности добывать продукты, хотя наиболее частая причина в пожилом возрасте - депрессия. Это может быть также следствием соблюдения постов, лечебного голодания или анорексии. Также причиной может быть плохое (жестокое) обращение с детьми или пожилыми.

У детей хроническая первичная белково-энергетическая недостаточность имеет три формы: маразм, квашиоркор и форма, имеющая характерные особенности обеих (маразматический квашиоркор). Форма белково-энергетической недостаточности зависит от соотношения в рационе питания небелковых и белковых источников энергии. Голодание - острая тяжелая форма первичной белково-энергетической недостаточности.

Маразм (также называется сухой формой белково-энергетической недостаточности) вызывает потерю веса и истощение мышц и жирового запаса. В развивающихся странах маразм - самая частая форма белково-энергетической недостаточности у детей.

Квашиоркор (также называемый влажной, одутловатой или отечной формой) связан с преждевременным отнятием старшего ребенка от груди, которое обычно встречается, когда рождается младший ребенок, «оттесняя» старшего ребенка от груди. Таким образом, дети с квашиоркором обычно старше, чем с маразмом. Квашиоркор может также явиться результатом острой болезни, часто гастроэнтерита или другой инфекции (вероятно, вторичной, из-за выработки цитокинов) у детей, которые уже имеют белково-энергетическую недостаточность. Диета, которая является более дефицитной по белку, чем по энергии, может с большей вероятностью вызвать квашиоркор, чем маразм. Менее часто, чем маразм, квашиоркор имеет тенденцию быть ограниченным определенными регионами мира, такими как сельские регионы Африки, Карибские и Тихоокеанские острова. В этих областях основные продукты питания (например, маниока, сладкий картофель, зеленые бананы) бедны белками и богаты углеводами. При квашиоркоре повышается проницаемость клеточных мембран, вызывая транссудацию внутрисосудистой жидкости и белка, что приводит к периферическому отеку.

Маразматический квашиоркор характеризуется суммарными особенностями маразма и квашиоркора. Пораженные им дети отечны и имеют больше жира в составе тела, чем при маразме.

Голодание - полная недостаточность питательных веществ. Иногда голодание добровольное (как в период религиозного поста или при неврогенной анорексии), но обычно оно обусловлено внешними факторами (например, стихийные обстоятельства, нахождение в пустыне).

Вторичная белково-энергетическая недостаточность

Этот тип обычно является результатом расстройств, которые влияют на функцию ЖКТ, кахектических расстройств и состояний, которые увеличивают метаболические потребности (например, инфекции, гипертиреоз, болезнь Аддисона, феохромоцитома, другие эндокринные нарушения, ожоги, травмы, хирургические вмешательства). При кахектических расстройствах (например, СПИД, рак) и почечной недостаточности катаболические процессы приводят к образованию избытка цитокинов, что в свою очередь ведет к недостаточности питания. Сердечная недостаточность терминальной стадии может вызвать кардиальную кахексию - тяжелую форму недостаточности питания, смертность от которой особенно высока. Кахектические расстройства могут уменьшить аппетит или ухудшить метаболизм питательных веществ. Расстройства, которые влияют на функцию ЖКТ, могут нарушать переваривание (например, недостаточность поджелудочной железы), всасывание (например, энтериты, энтеропатии) или лимфатический транспорт питательных веществ (например, забрюшинный фиброз, болезнь Милроя).

Патофизиология

Начальная метаболическая реакция - уменьшение интенсивности обмена веществ. Для обеспечения энергией организм сначала «расщепляет» жировую ткань. Однако затем внутренние органы и мышцы также начинают разрушаться, и их масса уменьшается. Больше всего «теряют» в весе печень и кишечник, промежуточное положение занимают сердце и почки, и меньше всего теряет в весе нервная система.

Симптомы белково-энергетической недостаточности

Симптомы умеренной белково-энергетической недостаточности могут быть общими (системными) или затрагивать определенные органы и системы. Характерны апатия и раздражительность. Пациент ослаблен, работоспособность снижена. Нарушены когнитивные способности, а иногда и сознание. Развиваются временный дефицит лактозы и ахлоргидрия. Часты поносы, и они усугубляются дефицитом кишечных дисахаридаз, особенно лактазы. Ткани гонад атрофичны. БЭН может вызвать аменорею у женщин и потерю либидо у мужчин и женщин.

Потери жира и мышечной массы являются общим проявлением для всех форм БЭН. У взрослых добровольцев, которые голодали в течение 30-40 дней, потери веса были явными (25 % начального веса). Если голодание более дпительное, то потери веса могут достигнуть 50 % у взрослых и, возможно, больше у детей.

Кахексия у взрослых наиболее очевидна в тех областях, где в норме обычно имеются видимые жировые отложения. Мышцы уменьшаются в объеме, а кости заметно выступают. Кожа становится тонкой, сухой, неэластичной, бледной и холодной. Волосы сухие и легко выпадают, становясь редкими. Ослаблено заживление ран. У пожилых пациентов увеличивается риск переломов бедра, пролежней, трофических язв.

При острой или хронической тяжелой белково-энергетической недостаточности размер сердца и сердечный выброс уменьшаются; пульс замедляется, снижается артериальное давление. Интенсивность дыхания и жизненная емкость легких снижаются. Падает температура тела, иногда приводя к смерти. Могут развиться отек, анемия, желтуха и петехии. Может наблюдаться печеночная, почечная или сердечная недостаточность.

Клеточный иммунитет ослаблен, увеличивается восприимчивость к инфекциям. Бактериальные инфекции (например, пневмония, гастроэнтерит, средний отит, инфекции урогенитального тракта, сепсис) являются характерными для всех форм белково-энергетической недостаточности. Инфекции приводят к активации продукции цитокинов, которые усугубляют анорексию, что приводит к еще большей потере мышечной массы и значительному уменьшению уровня сывороточного альбумина.

У младенцев маразм вызывает чувство голода, потерю веса, задержку роста, потерю подкожной жировой клетчатки и мышечной массы. Выступают ребра и лицевые кости. Дряблая, тонкая, «болтающаяся» кожа висит складками.

Квашиоркор характеризуется периферическими отеками. Живот выступает, но асцита нет. Кожа сухая, тонкая и сморщенная; она становится гиперпигментированной, трескается, а потом развивается ее гипопигментация, рыхлость и атрофия. Кожа различных областей тела может поражаться в различное время. Волосы становятся тонкими, бурыми или седыми. Волосы на голове легко выпадают, в конечном счете, становясь редкими, но волосы ресниц могут даже чрезмерно расти. Чередование недостаточности питания и адекватного питания приводит к тому, что волосы имеют вид «полосатого флага». Больные дети могут быть апатичными, но становятся раздражительными, если их пытаются расшевелить.

Полное голодание смертельно, если длится более 8-12 недель. Таким образом, характерные для белково-энергетической недостаточности симптомы не успевают развиться.

Диагностика белково-энергетической недостаточности

Диагноз основывается на истории болезни, когда устанавливается явно неадекватное потребление пищи. Должна быть идентифицирована причина неадекватного питания, особенно у детей. У детей и подростков нужно обязательно иметь в виду возможность жестокого обращения и нервную анорексию.

Данные объективного обследования могут обычно подтвердить диагноз. Для идентификации причины вторичной белково-энергетической недостаточности необходимы лабораторные исследования. Измерение уровня альбумина плазмы, общего количества лимфоцитов, CD4+ Т-лимфоцитов и реакция на кожные антигены помогают определить тяжесть белково-энергетической недостаточности или подтвердить диагноз при пограничных состояниях. Проведение измерения уровня С-реактивного белка или растворимого рецептора интерлейкина-2 может помочь определить причину недостаточного питания при ее неясности и подтвердить нарушение продукции цитокинов. Многие дополнительные показатели могут отличаться от нормальных значений: например, характерны сниженные уровни гормонов, витаминов, липидов, холестерина, преальбумина, инсулиноподобного фактора роста-1, фибронектина и ретинолсвязывающего протеина. Уровни креатинина и метил-гистидина в моче могут использоваться как критерии оценки степени потери массы мышц. Поскольку катаболизм белка замедляется, уровень мочевины в моче также уменьшается. Эти данные редко учитываются при выборе тактики лечения.

С помощью других лабораторных тестов можно выявить и сопутствующие отклонения, которые требуют лечения. Должны быть определены уровни электролитов сыворотки, показатели мочевины и креатинина, BUN, глюкозы, возможно, Са, Мg, фосфата и Na. Уровни глюкозы крови и электролитов (особенно К, Са, Мд, фосфата, иногда Na) обычно низкие. Показатели мочевины и креатинина, BUN в большинстве случаев сохраняются на низких значениях, до развития почечной недостаточности. Возможно выявление метаболического ацидоза. Проводится общий анализ крови; обычно присутствует нормоцитарная анемия (главным образом из-за дефицита белка) или микроцитарная анемия (из-за одновременного дефицита железа).

  1. Жиры, их значение для организма и источники в питании. ПНЖК, липотропные вещества, их значение и источники.

Жиры относятся к основным питательным веществам и являются обязательным компонентом в сбалансированном питании.

Физиологическое значение жира весьма многообразно. Жиры является источником энергии, превосходящей энергию всех других пищевых веществ. При сгорании 1 г жира образуется 9 ккал, тогда как при сгорании 1 г углеводов или белков – по 4 ккал. Жиры участвуют в пластических процессах, являясь структурной частью клеток и их мембранных систем.

Жиры являются растворителями витаминов А, Е, D и способствуют их усвоению. С жирами поступает ряд биологически ценных веществ: фосфолипиды (лецитин), ПНЖК, стерины и токоферолы и другие биологически активные вещества. Жир улучшает вкусовые свойства пищи, а также повышает ее питательность.

Недостаточное поступление жира приводит к нарушениям в центральной нервной системе ослаблению иммунобиологических механизмов, дегенеративным нарушениям функции кожи, почек, органа зрения и др.

В составе жира и сопутствующих ему веществ выявлены эссеециальные, жизненно необходимые незаменимые компоненты, в том числе липотропного, антиатеросклеротического действия (ПНЖК, лецитин, витамины А, Е и др.).

Жир оказывает влияние на проницаемость клеточной стенки, состояние ее внутренних элементов, что способствует сбережению белка. В целом от уровня сбалансированности жира с другими пищевыми веществами зависят интенсивность и характер многих процессов, протекающих в организме, связанных с обменом и усвоением пищевых веществ.

По химическому составу жиры представляют собой сложные комплексы органических соединений, основными структурными компонентами которых являются глицерин и жирные кислоты. Удельный вес глицерина в составе жира незначителен и составляет 10 %. Основное значение, определяющее свойства жиров, имеют жирные кислоты. Они подразделяются на предельные (насыщенные) и непредельные (ненасыщенные). Состав жиров

Предельные (насыщенные) жирные кислоты чаще встречаются в составе животных жиров. Высокомолекулярные насыщенные кислоты (стеариновая, арахиновая, пальмитиновая) обладают твердой консистенцией, низкомолекулярные (масляная, капроновая и др.) – жидкой. От молярной массы зависит и температура плавления: чем выше молярная масса насыщенных жирных кислот, тем выше температура их плавления.

По биологическим свойствам предельные жирные кислоты уступают непредельным. С предельными (насыщенными) жирными кислотами связывают представления об отрицательном их влиянии на жировой обмен, на функцию и состояние печени, а также развитие атеросклероза (за счет поступления холестерина).

Непредельные (ненасыщенные) жирные кислоты широко представлены во всех пищевых жирах, особенно в растительных маслах. Наиболее часто в составе пищевых жиров встречаются непредельные кислоты с одной, двумя и тремя двойными ненасыщенными связями. Это обуславливает их способность вступать в реакции окисления и присоединения. Реакции присоединения водорода (насыщения) используют в пищевой промышленности при получении маргарина. Легкая окисляемость ненасыщенных жирных кислот приводит к накоплению окисленных продуктов и последующей их порче.

Типичный представитель ненасыщенных жирных кислот с одной связью – олеиновая кислота, которая находится почти во всех животных и растительных жирах. Она играет важную роль в нормализации жирового и холестеринового обмена.

Полиненасыщенные (эссенциальные) жирные кислоты

К ПНЖК относят жирные кислоты, содержащие несколько двойных связей. Линолевая имеет две двойные, линоленовая – три, а арахидоновая – четыре двойные связи. Высоконепредельные ПНЖК рассматриваются некоторыми исследователями как витамин F.

ПНЖК принимают участие в качестве структурных элементов высокоактивных в биологическом отношении комплексов – фосфолипидов и липопротеидов. ПНЖК – необходимый элемент в образовании клеточных мембран, миелиновых оболочек, соединительной ткани и др.

Синтез жирных кислот, необходимых для структурных липидов организма, происходит преимущественно за счет ПНЖК пищи. Биологическая роль линоленовой кислоты заключается в том, что она предшествует в организме биосинтезу арахидоновой кислоты. Последняя в свою очередь предшествует образованию простагландинов – тканевых гормонов.

Установлена важная роль ПНЖК в холестериновом обмене. При недостаточности ПНЖК происходит этерификация холестерина с насыщенными жирными кислотами, что способствует формированию атеросклеротического процесса.

При недостатке ПНЖК снижаются интенсивность роста и устойчивость к неблагоприятным внешним и внутренним факторам, угнетается репродуктивная функция, появляется склонность к возникновению тромбоза коронарных сосудов. ПНЖК оказывают нормализующее действие на клеточную стенку кровеносных сосудов, повышая ее эластичность и снижая проницаемость.

ПНЖК являются эссенциальными несинтезируемыми веществами, но превращение одних жирных кислот в другие возможно.

Оптимальной в биологическом отношении формулой сбалансированности жирных кислот в жире может служить следующее соотношение: 10 % ПНЖК, 30 % насыщенных жирных кислот и 60 % мононенасыщенной (олеиновой) кислоты.

Суточная потребность в ПНЖК при сбалансированном питании составляет 2—6 г, что обеспечивается 25—30 г растительного масла.

Фосфолипиды – биологически активные вещества, входящие в структуру клеточных мембран и участвующие в транспорте жира в организме. В молекуле фосфолипидов глицерин этерифицирован ненасыщенными жирными кислотами и фосфорной кислотой. Типичным представителем фосфолипидов в продуктах питания является лецитин, хотя схожим биологическим действием обладают кефалин и сфингомиелин.

Фосфолипиды представлены в нервной ткани, ткани мозга, сердца, печени. Фосфолипиды синтезируются в организме в печени и почках.

Лецитин участвует в регулировании холестеринового обмена, способствуя его расщеплению и выведению из организма. В норме его содержание в крови 150—200 мг%, а коэффициент лецитин / холестерин равен 0,9—1,4. Потребность в фосфолипидах составляет для взрослого человека 5 г в сутки и удовлетворяется за счет эндогенных фосфолипидов, образующихся из предшественников полной деградации.

Фосфолипиды особенно важны в питании пожилых людей, так как обладают выраженным липотропным, антиатеросклеротическим действием.

Стерины – гидроароматические спирты сложного строения, относящиеся к группе неомыляемых веществ нейтрального характера. Содержание в животных жирах – зоостерины – 0,2—0,5 г на 100 г продукта, в растительных – фотостерины – 6,0—17,0 г на 100 г продукта.

Фитостерины играют важную роль в нормализации холестеринового и жирового обмена. Их представителями являются ситостерины, образующие нерастворимые невсасывающи на 100 г масла), хлопковое (400 мг), соевое, арахисовое, оливковое (по 300 мг) и подсолнечное масло (200 мг).

Из зоостеринов основное значение имеет холестерин. Из продуктов питания больше всего его в головном мозге – 4 %, хотя он широко представлен во всех пищевых продуктах животного происхождения. Холестерин обеспечивает удержание влаги клеткой и придает ей необходимый тургор. Участвует в образовании ряда гормонов, в том числе и половых, участвует в синтезе желчи, а также нейтрализует яды: гемолитические, паразитарные, бактериальные.

Холестерин рассматривают и как фактор, участвующий в формировании и развитии атеросклероза. Однако имеются исследования, выдвигающие здесь на первый план повышенное потребление животных жиров, богатых твердыми, насыщенными жирными кислотами.

Основной биосинтез холестерина происходит в печени и зависит от характера поступающего жира. При поступлении насыщенных жирных кислот биосинтез холестерина в печени повышается и, наоборот, при поступлении ПНЖК – снижается.

В состав жиров входят также витамины A, D, Е, а также пигменты, часть которых обладает биологической активностью (каротин, госсипол и др.).

Потребность в нормировании жиров

Суточная потребность взрослого человека в жирах составляет 80—100 г/сутки, в том числе растительного масла – 25—30 г, ПНЖК – 3—6 г, холестерина – 1 г, фосфолипидов – 5 г. В пище жир должен обеспечить 33 % суточной энергетической ценности рациона. Это для средней зоны страны, в северной климатической зоне эта величина составляет 38—40 %, а в южной – 27—28 %.

  1. Углеводы, их значение для организма и источники в питании. «Защищенные» углеводы, пищевые волокна, их значение и источники. Химическая структура и классификация углеводов

Само называние «углеводы», предложенное в 1844 г. К. Шмидтом, основано на том, что в химической структуре этих веществ атомы углерода сочетаются с атомами кислорода и водорода в таких же соотношениях, как в составе воды. Например, химическая формула глюкозы С6(Н2О)6, сахарозы С12(Н2О)11, крахмала С5(Н2О)n. В зависимости от сложности строения, растворимости, быстроты усвоения и использования для гликогенообразования углеводы могут быть представлены в виде следующей классификационной схемы:

1) простые углеводы (сахара):

а) моносахариды: глюкоза, фруктоза, галактоза;

б) дисахариды: сахароза, лактоза, мальтоза;

2) сложные углеводы: полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка). Значение углеводов в питании

Углеводы являются основной составной частью пищевого рациона. За счет углеводов обеспечивается не менее 55 % суточной калорийности. (Вспомним соотношение основных питательных веществ по калорийности в сбалансированном рационе – белки, жиры и углеводы – 120 ккал : 333 ккал : 548 ккал – 12 % : 33 % : 55 % – 1 : 2,7 : 4,6). Основное назначение углеводов – компенсация энергозатрат. Углеводы являются источником энергии при всех видах физической работы. При сгорании 1 г углеводов образуется 4 ккал. Это меньше, чем у жиров (9 ккал). Однако в сбалансированном питании наблюдается преобладание углеводов: 1 : 1,2 : 4,6; 30 г : 37 г : 137 г. При этом среднесуточная потребность в углеводах составляет 400—500 г. Углеводы как источник энергии обладают способностью окисляться в организме как аэробным, так и анаэробным путем.

Углеводы входят в состав клеток и тканей организма, и таким образом в какой-то мере участвуют в пластических процессах. Несмотря на постоянное расходование клетками и тканями своих углеводов на энергетические цели, содержание в них этих веществ поддерживается на постоянном уровне при условии достаточного их поступления с пищей.

Углеводы тесно связаны с обменом жира. При больших физических нагрузках, когда расход энергии не покрывается углеводами пищи и углеводными запасами организма, происходит образование сахара из жира, который находится в жировом депо. Однако чаще наблюдается обратное влияние, т. е. образование новых количеств жира и пополнение ими жировых депо организма за счет избыточного поступления углеводов с пищей. При этом превращение углеводов идет не по пути полного окисления до воды и углекислого газа, а по пути превращения в жир. Избыток потребления углеводов – широко распространенное явление, лежащее в основе формирования избыточной массы тела.

Обмен углеводов тесно связан и с обменом белка. Так, недостаточное поступление углеводов с пищей при интенсивной физической нагрузке вызывают усиленный расход белка. Наоборот, при ограниченных белковых нормах введением достаточного количества углеводов можно добиться минимального расходования белка в организме.

Некоторые углеводы обладают и выраженной биологической активностью, выполняя специализированные функции. Это гетерополисахариды крови, определяющие группы крови, гепарин, предотвращающий образование тромбов, аскорбиновая кислота, обладающая С-витаминными свойствами, маркерная специфичность за счет углеводсодержащих компонентов в ферментах, гормонах и др.

Основным источником углеводов в питании являются растительные продукты, в которых углеводы составляют не менее 75 % сухого вещества. Значение животных продуктов как источников углеводов невелико. Основной животный углевод – гликоген, обладающий свойствами крахмала, содержится в животных тканях в небольших количествах. Другой животный углевод – лактоза (молочный сахар) – содержится в молоке в количестве 5 г на 100 г продукта (5 %).

В целом усвояемость углеводов достаточно высока и составляет 85—98 %. Так, коэффициент усвояемости углеводов овощей составляет 85 %, хлеба и круп – 95 %, молока – 98 %, сахара – 99 %. Углеводы ещё можно разделить на рафинированные и нерафинированные (защищенные). Рафинированные углеводы – это сахара, которые освобождены от сопутствующих примесей в процессе очистки. Продукты на основе рафинированных углеводов очень легко усваиваются в организме, что в большой степени способствует формированию избыточного веса, нарушению холестеринового и жирового обмена. Источниками рафинированных углеводов являются свекловичный и тростниковый сахар, концентраты, все виды кондитерских изделий, изделий из высших сортов пшеничной муки, смеси и изделия из зерновых.

К источникам защищенных углеводов относятся растительные продукты. Углеводы в растительных продуктах представлены преимущественно крахмалом с сопутствующей клетчаткой ( не менее 0,4%), что защищает крахмал от быстрого воздействия пищеварительных ферментов и создаёт тем самым условия для их медленного переваривания и меньшего использования для жирообразования. К источникам защищённых углеводов относятся хлебные изделия из муки, приготовленной с цельного зерна, большинство овощей, фруктов и ягод. Суточное потребление углеводов для человека составляет примерно 350-500 г. Пищевые волокна — компоненты пищи, не перевариваемые пищеварительными ферментами организма человека, но перерабатываемые полезной микрофлорой кишечника. В некоторых источниках понятие пищевых волокон определяется как сумма полисахаридов и лигнина, которые не перевариваются эндогенными секретами желудочно-кишечного тракта человека. По мнению многих специалистов данное определение является наиболее верным.

Продукты[2]

Энергетическая ценность, ккал/100 г

Содержание пищевых волокон

г/100 г

г/100 ккал

Зерновые, крупы, мучные изделия, орехи

Пшеничные отруби

165

43,0

26,1

Хлеб из ржаной муки

200

8,0

4,0

Хлеб бородинский

201

7,9

3,9

Хлеб зерновой

228

6,1

2,7

Каша гречневая

101

2,7

2,7

Сухари из муки 2С

323

7,0

2,2

Хлеб пшеничный из муки 2С

228

4,6

2,0

Каша перловая

135

2,5

1,9

Каша овсяная

109

1,9

1,7

Сушки простые

331

4,5

1,4

Хлеб пшеничный из муки 1С

240

3,2

1,3

Каша пшеничная

153

1,7

1,1

Хлеб пшеничный из муки В/С

250

2,3

0,9

Макароны отварные

135

1,1

0,8

Каша манная

100

0,8

0,8

Орехи

650

4,0

0,6

Овощи, бобовые, фрукты, ягоды

Фасоль стручковая

16

2,5

15,6

Капуста брюссельская

35

4,2

12,0

Белокочанная капуста

28

2,0

7,1

Морковь

35

2,4

6,9

Петрушка, укроп, салат, лук зелёный

30

2,0

6,7

Свекла отварная

48

3,0

6,3

Помидоры

24

1,4

5,8

Грибы жареные

172

6,8

4,0

Горох отварной

130

5,0

3,8

Смородина чёрная

44

4,8

10,9

Киви

47

3,8

8,1

Курага

242

18,0

7,4

Яблоки сушеные

253

14,9

5,9

Апельсин

43

2,2

5,1

Абрикосы

44

2,1

4,8

Яблоки

47

1,8

3,8

Изюм

281

9,6

3,4

Виноград

72

1,6

2,2

  1. Витамины, их значение для организма и источники в питании. Профилактика гиповитаминозов среди населения.

Витамины и их роль в организме человека.

Витамины являются очень важными и незаменимыми факторами питания. Эти биологически активные вещества играют огромную роль во всех процессах жизнедеятельности организма, особо важны они в период интенсивного роста и развития. Они регулируют обменные процессы., участвуют в кроветворении, обеспечивают нормальную жизнедеятельность нервной, сердечно-сосудистой, иммунной и пищеварительной систем, участвуют в образовании ферментов, гормонов, повышают устойчивость организма к действию токсинов, радионуклидов и других вредных факторов.

Сложность заключается в том, что витамины (кроме некоторых витаминов группы В и витамина D) не синтезируются в организме и должны поступать извне, с пищей, но часто в наших продуктах питания содержится низкий уровень витаминов, что связано в нарушениями в их транспортировке, неправильном хранении, тепловой обработки, высушивании и консервировании.

Как известно витамины делятся на 2 большие группы: водорастворимые (витамин С , группа В, РР и Н) и жирорастворимые (A,D,E,K). Рассмотрим роль каждого из витаминов подробнее.

Витамин С – имеет очень важное значение для организма – принимает участие во всех видах обмена, активизирует действие некоторых гормонов и ферментов, регулирует окислительно-восстановительные процессы, способствует росту клеток и тканей, повышает устойчивость организма к вредным факторам внешней среды, особенно к инфекционным агентам. Влияет на состояние проницаемости стенок сосудов, регенерацию и заживление тканей. Участвует в процессе всасывания железа в кишечнике, обмене холестерина и гормонов коры надпочечников.

Основной источник витамина С – свежие овощи, фрукты, ягоды, зелень, картофель, но он очень неустойчив – легко разрушается при нагревании, длительном хранении, под действием света и кислорода воздуха. Так, например, в картофеле после 6 месяцев хранения его количество уменьшается вдвое. Витамин С лучше сохраняется в кислой среде (квашенная капуста), в консервированных продуктах без доступа воздуха и замороженных продуктах.

Витамин В1 – тиамин играет большую роль в функционировании органов пищеварения и центральной нервной системы, играет ключевую роль в обмене углеводов. Он хорошо выдерживает воздействие высоких температур в кислой среде, но разрушается в щелочной среде и воздействии ультрафиолетового облучения. Основной источник – хлеб и хлебобулочные изделия грубого помола, бобовые, крупы, дрожжи, некоторые мясные продукты (говядина, телятина, кролик).

Витамин В2 – рибофлавин играет большую роль в углеводном, белковом и жировом обмене, процессах тканевого дыхания, способствует выработке энергии в организме. Обеспечивает нормальное функционирование центральной нервной системы, пищеварительной системы, органов зрения, кроветворения, поддерживает нормальное состояние кожи и слизистых. Его содержание высоко в печени, сушеных грибах, дрожжах, молоке и молочных продуктах.

Витамин В3 – пантотеновая кислота – играет важную роль в обмене жиров и жирных кислот, тесно связана с работой коры надпочечников, глее участвует в выработке стероидных гормонов. Одно из его важных свойств – ускорение образования здоровой ткани при ожогах, язвах, стоматитах. Также принимает участие в нормализации микрофлоры кишечника, стимулирует рост бифидобактерий. Основной источник – мясо, печень и бобовые.

Витамин В6 – пиридоксин, принимает участие в обмене белка и отдельных аминокислот, также жировом обмене, кроветворении, кислотообразующей функции желудка. Широко распространен в продуктах: мясо, рыба, яйца.

Ниацин – витамин РР входит в состав многих ферментов, стимулирующих процессе клеточного и энергетического обмена, усиливает окислительные реакции. Улучшает углеводный обмен, влияет на кроветворение, функцию нервной и пищеварительной систем, поддерживает нормальное состояние кожных покровов. Оказывает сосудорасширяющее действии. Основные источники - мясо, крупы, хлеб и хлебобулочные изделия.

Витамин В12 - кобаламин - играет большую роль в кроветворении и работе центральной нервной системы, участвует в белковом обмене, предупреждает жировое перерождение печени. Отчасти синтезируется в организме микрофлорой кишечника, но в основном должен поступать с пищей – основной источник продукты животного происхождения (мясо, молочные продукты) .

Фолиевая кислота – принимает участие в функции кроветворения, способствует синтезу эритроцитов, активизирует использование организмом витамина В12, важны для процессов роста и развития. Источники – хлеб, крупы, бобовые, творог, лиственные овощи.

Витамин Н – биотин принимает участие в синтезе дикарбоновых кислот, основной источник – мясо, молоко, бобовые, цветная капуста, дрожжи.

Жирорастворимые витамины – ретинол (А), токоферол (Е), кациферол (D) и викасол (К) - обладают способностью целенаправленно воздействовать на определенные ткани организма, обеспечивая нормализацию обменных процессов в этих «тканях-мишенях». Для ретинола – это сетчатка глаза, токоферола – мышечная ткань, кальциферола – костная, викасола – свертывающая система крови.

Ретинол (витамин А) нужен для нормального роста и развития организма, участвует в образовании в сетчатке глаз зрительного пурпура, влияет на состояние кожных покровов, слизистых оболочек, обеспечивая их защиту. Способствует синтезу белков, обмену липидов, поддерживает процессы роста, повышает устойчивость к инфекциям. Наиболее богаты витамином А (в активной форме) рыбий жир, сливочное масло, яичный желток, сыр. В растительных продуктах содержится предшественник витамина А – бета-каротин. Он в организме превращается в активный витамин А, при наличии достаточного количества белков и витамина С. Каротин в ЖКТ всасывается частично, оно улучшается при добавлении жиров к растительным продуктам, а также при измельчении и тепловой обработке.

Токоферол (витамин Е) является мощным антиоксидантом, оказывает нормализующее действие на мышечную ткань. Источники – растительные масла, рыба, орехи, бобовые, облепиха.

Калициферолы (витамин D) существует много разновидностей, самые необходимые для человека витамин D2 (эркокальциферол) и витамин D3 (холекальциферол). Они регулируют транспорт кальция и фосфатов в клетках слизистой оболочки тонкой кишки и костной ткани, участвуют в синтезе костной ткани, усиливают ее рост. Витамин D может синтезироваться в коже под действием солнечных лучей. В продуктах он содержится – жирные сорта рыбы, икра, яйцо, печень трески.

Викасол (витамин К) регулирует свертываемость крови, участвует в выработке протромбина. Синтезируется бактериальной флорой кишечника и поступает с пищей, источники – зеленые части растений (салат, шпинат, крапива, зелень петрушки, наружные листья капусты), телятина, баранина, свинина и говядина. Устойчив к нагреванию, разрушается в щелочной среде и под действием ультрафиолета. Витамины - это простые соединения, не синтезируемые организмом, необходимые человеку в небольших количествах и поступающие в организм с пищей. Они являются обязательной составной частью многих ферментов, гормонов и непосредственно участвуют в обмене веществ, главным образом в процессах ассимиляции. Витамины должны находиться в организме в такой концентрации, которая обеспечивала бы должное соотношение ассимиляторных и диссимиляторных реакций организма. Понижение этой концентрации влечет за собой снижение уровня ассимиляционных процессов, отставание их от диссимиляционных. Это отставание внешне на первых порах проявляется в различных функциональных расстройствах организма: замедлении роста, понижении работоспособности, быстрой утомляемости, снижении сопротивляемости вредным факторам окружающей среды, т.е. ведет к маргинальным состояниям, а затем к гипо витаминозам. В дальнейшем могут развиться специфические заболевания с характерным клиническим течением - авитаминозы (цинга, бери-бери, пеллагра, рахит, ксерофтальмия и др.) как последствия глубокого нарушения обмена веществ, вызванного резкой недостаточностью витаминов в организме. Чрезмерно высокое поступление витаминов, особенно жирорастворимых, может вызвать гипервитаминоз с тяжелым клиническим течением и последствиями при реабилитации. В настоящее время установлено, что между вита минами и другими пищевыми веществами существует тесное взаимодействие. Потребность организма в витаминах зависит от состава пищи. Так, повышенное содержание в пище углеводов увеличивает потребность организма в тиамине; повышенное содержание белка - в рибофлавине, никотиновой кислоте. Уменьшение количества белка в пище снижает потребность организма в этих витаминах, а также в аскорбиновой кислоте. Возникновение гиповитаминозов может иметь эндо и экзогенное происхождение. Эндоген ные причины: недостаточное поступление витаминов с пищей вследствие неправильного выбора продуктов, однообразного питания, неправильного приготовления пищи, длительного хранения продуктов. Экзогенные причины: а) повышенная потребность в витаминах в результате определенных физиологических состояний (беременность, грудное вскармливание ребенка, тяжелый физический труд, высокая и низкая температура окружающей среды, инфекционные болезни, химические вредности в условиях производства и др.); б) нарушение всасывания витаминов в желудочно-кишечном тракте. В этой связи лечащим врачам необходимо уметь определять витаминную обеспеченность организма пациента, при недост. в вит. Назначают витаминные препараты :ревит, дуавит, вит.С, в/м вит.В12, В6, В1 и т.д.

  1. Макро- и микроэлементы, их значение для организма и источники в питании.

Что такое макро - и микроэлементы и какова их роль в нашей жизнедеятельности?

Одними из основных факторов питания, влияющих на состояние здоровья, работоспособность и активное долголетие, являются микронутриенты – витамины и витаминоподобные вещества, макро- и микроэлементы. Организм не производит мpикронутриенты и должен получать их в готовом виде, например, с пищей. Способность запасать эти вещества у организма отсутствует.

Макронутриенты – пищевые вещества (белки, жиры и углеводы), необходимые человеку в количествах, измеряемых граммами, обеспечивают энергетические, пластические и прочие потребности организма.

Микронутриенты – вещества (витамины, минералы, микроэлементы), содержащиеся в пище в минимальных количествах – миллиграммах или микрограммах. Они не дают энергию, но участвуют в процессах усвоения пищи, осуществлении процессов роста, адаптации и развития организма.

Макроэлементы: кальций, фосфор, магний, калий, натрий. Микроэлементы: железо, цинк, йод, селен, медь, молибден, хром, марганец, кремний, кобальт, фтор, ванадий, бор, серебро.

Минорные и биологически активные вещества пищи с установленным физиологическим действием – природные химические вещества, присутствуют в продуктах в миллиграммах и микрограммах. Они участвуют в адаптационных реакциях организма, способствуют поддержанию здоровья, но не являются незаменимыми пищевыми веществами.

Эссенциальные (незаменимые) – пищевые вещества, не образуются в организме человека и обязательно поступают с пищей для обеспечения его жизнедеятельности. Их дефицит в питании приводит к развитию патологических состояний.

Микронутриенты относятся к незаменимым пищевым веществам. Они абсолютно необходимы для нормального осуществления обмена веществ, роста и развития организма человека, защиты от болезней и неблагоприятных факторов окружающей среды, надежного обеспечения всех жизненных функций организма, включая детородную. Организм человека не синтезирует микронутриенты и должен получать их в готовом виде с пищей ежедневно.

Макро- элементы

Биологическое воздействие на организм

Возможные заболевания при дефиците витаминов или минеральных веществ

Пищевые продукты

Средняя суточная потребность для взрослых*

Максимально допустимая суточная доза**

мужчины

женщины

Кальций

Образование костной ткани, формирование зубов, процесс сверстывания крови, нервно-мышечная проводимость

Остеопороз, судороги (тетания)

Молоко и молочные продукты

1000 мг

1000 мг

FNB 2500 мг

Фосфор

Элемент органических соединений, буферных растворов; образование костной ткани, трансформация энергии

Нарушения роста, костные деформации, рахит, остеомаляция

Молоко, молочные продукты, мясо, рыба

700 мг

700 мг

FNB 4000 мг

Магний

Образование костной ткани, формирование зубов; нервно-мышечная проводимость; коэнзим (кофермент) в углеводном и белковом обменах; неотъемлемый компонент внутриклеточной жидкости

Апатия, зуд, мышечная дистрофия и судороги; заболевания желудочно-кишечного тракта, нарушение сердечного ритма

Продукты из муки грубого помола, орехи, бобовые, зеленые овощи

350 мг

300 мг

FNB 350 мг

Натрий

Важнейший компонент межклеточной жидкости, поддерживающий осмотическое давление; кислотно-щелочное равновесие; передача нервного импульса

Гипотония, тахикардия, мышечные судороги

Пищевая соль

550 мг

550 мг

FNB (нет данных)

Калий

Важнейший компонент внутриклеточной жидкости; кислотно-щелочное равновесие, мышечная деятельность; синтез белков и гликогена

Мышечная дистрофия, паралич мышц, нарушение передачи нервного импульса, сердечного ритма

Сухофрукты, бобовые, картофель, дрожжи

2000 мг

2000 мг

FNB (нет данных)

Макро- элементы

Биологическое воздействие на организм

Возможные заболевания при дефиците витаминов или минеральных веществ

Пищевые продукты

Средняя суточная потребность для взрослых*

Максимально допустимая суточная доза**

беремен- ные

кормящие

Кальций

Образование костной ткани, формирование зубов, процесс сверстывания крови, нервно-мышечная проводимость

Остеопороз, судороги (тетания)

Молоко и молочные продукты

1000 мг

1200 мг

FNB 2500 мг

Фосфор

Элемент органических соединений, буферных растворов; образование костной ткани, трансформация энергии

Нарушения роста, костные деформации, рахит, остеомаляция

Молоко, молочные продукты, мясо, рыба

800 мг

900 мг

FNB 4000 мг

Магний

Образование костной ткани, формирование зубов; нервно-мышечная проводимость; коэнзим (кофермент) в углеводном и белковом обменах; неотъемлемый компонент внутриклеточной жидкости

Апатия, зуд, мышечная дистрофия и судороги; заболевания желудочно-кишечного тракта, нарушение сердечного ритма

Продукты из муки грубого помола, орехи, бобовые, зеленые овощи

310 мг

390 мг

FNB 350 мг

Натрий

Важнейший компонент межклеточной жидкости, поддерживающий осмотическое давление; кислотно-щелочное равновесие; передача нервного импульса

Гипотония, тахикардия, мышечные судороги

Пищевая соль

FNB (нет данных)

Калий

Важнейший компонент внутриклеточной жидкости; кислотно-щелочное равновесие, мышечная деятельность; синтез белков и гликогена

Мышечная дистрофия, паралич мышц, нарушение передачи нервного импульса, сердечного ритма

Сухофрукты, бобовые, картофель, дрожжи

FNB (нет данных)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]