Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BLOK_2.docx
Скачиваний:
214
Добавлен:
18.05.2015
Размер:
384.42 Кб
Скачать

Симметрии пространства-времени

Как сказано выше, обычно выделяют внешние и внутренние симметрии. Внутренние симметрии – это геометрические и калибровочные симметрии самой материи, отражающие инвариантность (независимость) свойств элементарных частиц и их взаимодействий относительно определенных преобразований. Большинство из них ярко проявляются лишь в микромире, присутствуя на макро- и мегауровне в скрытом виде. Внешние симметрии – это симметрии пространственно-временного континуума, одинаково ярко проявляющиеся на всех уровнях организации материи.

Выделяют следующие симметрии пространства-времени:

1.      Однородность пространства. Это – сдвиговая симметрия пространства. Она заключается в эквивалентности, равенстве всех точек пространства, то естьотсутствии в пространстве каких-либо выделенных точек. Параллельный перенос (сдвиг) системы как целого в пространстве не приводит к изменению ее свойств, то есть физические законы инвариантны относительно сдвигов в пространстве.

2.      Изотропность пространства. Это – поворотная симметрия пространства. Она заключается в равенстве всех направлений в пространстве, то есть вотсутствии в пространстве выделенных направлений. Поворот системы как целого в пространстве не приводит к изменению ее свойств, то естьфизические законы инвариантны относительно поворотов в пространстве.

3.      Однородность времени. Сдвиговая симметрия времени отражает равенство всех точек времени, то естьотсутствие выделенных точек начала отсчета времени. Перенос системы как целого во времени не приводит к изменению ее свойств, то естьфизические законы не меняются с течением времени.

Что касается изотропности времени, то вопрос о наличии этой симметрии долгое время оставался открытым и во многом остается дискуссионным до сих пор. Так, в классической механике время симметрично: идеальные механические процессы полностью обратимы, и “поворот во времени” не приводит к изменению законов механики. В ОТО, где время, наряду с пространством, рассматривается как одна из геометрических координат, также постулируется эквивалентность его прямого и обратного течения. Подавляющее большинство элементарных процессов, протекающих в результате сильного, электромагнитного и слабого взаимодействий, также симметричны по отношению к этому преобразованию (за исключением распадов K0L-мeзонов). Но в то же время, развитие термодинамики (см. тему 2.5) показало, что в макроскопических процессах, связанных с превращением энергии, происходит ее необратимое рассеивание. Таким образом, все реальные процессы, происходящие на уровнемакро- и мегаскопических материальных систем не инвариантны по отношению к направлению времени. Его изменение на противоположное привело бы к изменению законов термодинамики: необратимое рассеивание энергии сменилось бы ее самопроизвольной концентрацией. Следовательно, для этих процессов времяанизотропно, не обладает симметрией поворота.

Связь законов сохранения с симметрией (теорема Нетер)

Развитие математических методов описания симметрии, в частности аналитической механики Лагранжа и Гамильтона, показало, что как законы классической механики Ньютона, так и уравнения электродинамики Максвелла могут быть выведены математическим путем из соображений симметрии. Методы аналитической механики можно распространить и на квантовую механику, где классические теории теряют свою применимость.

Важнейший результат в этой области теоретической физики связан с именем выдающейся женщины-математика Амалии (Эмми) Нетер (1882–1935). В 1918 г. Нетер была доказана теорема, позднее названная ее именем, из которой следует, что если некоторая система инвариантна (неизменна) относительно некоторого преобразования, то для нее существует определенная сохраняющаяся величина. Иными словами, существование любой конкретной симметрии приводит к соответствующему закону сохранения.

Эта теорема справедлива для любых симметрий – в пространстве-времени, степенях свободы элементарных частиц и физических полей, – то есть она носит универсальный характер. Теорема Нетер стала важнейшим инструментом теоретической физики, утвердившим особуюмеждисциплинарную роль принципов симметрии при построении физической теории.

Непрерывные симметрииприводят к существованию законов сохранения, проявляющихся на всех уровнях организации материи. Так, согласно теореме Нетер, из однородности (сдвиговой симметрии) пространства следуетзакон сохранения импульса(количества движения), из изотропности (поворотной симметрии) пространства –закон сохранения момента импульса(момента количества движения), из однородности времени следуетзакон сохранения энергии. Из калибровочной симметрии динамики заряженных частиц в электромагнитных полях следуетзакон сохранения электрического заряда.

Что касается дискретных симметрий, то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив принцип суперпозиции, из существования дискретных симметрий также следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Так, зеркальная симметрия, или пространственная инверсия (Р), приводит к закону сохранения пространственной четности; симметрия замены всех частиц на античастицы, или зарядовое сопряжение (С) – к закону сохранения зарядовой четности и т. д.

Теорема Нетер дает наиболее простой и универсальный метод получения законов сохранения. Особенно важное значение имеет теорема Нетер в квантовой теории поля, где законы сохранения, вытекающие из существования определенной группы симметрии, являются часто основным источником информации о свойствах изучаемых объектов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]