Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BLOK_2.docx
Скачиваний:
214
Добавлен:
18.05.2015
Размер:
384.42 Кб
Скачать

Корпускулярно-волновой дуализм в современной физике

Представления А. Эйнштейна о квантах света, послужившие в 1913 г. отправным пунктом теории Н. Бора, через 10 лет снова оказали плодотворное воздействие на развитие атомной физики. Они привели к идее о “волнах материи” и тем самым заложили основу новой стадии развития квантовой теории.

В 1924 г. произошло одно из величайших событий в истории физики: французский физик Л. де Бройльвыдвинул идею о волновых свойствах материи. В своей работе «Свет иматерия» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.

Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам.

Согласно де Бройлю, любому телу с массой m, движущемуся со скоростьюv, соответствует волна λ =h/mv. Фактически аналогичная формула была известна раньше, но только применительно к квантам света – фотонам.

Позднее де Бройль. Девиссон и Л. Джермер установили, что такие частицы, как электроны, дифрагируют на кристаллах как волна, и длина этих волн полностью соответствует формула де Бройля. В последствии экспериментальная проверка дифракции электронов была многократно повторена, были проведены и эксперименты, устанавливающие дифракцию других частиц и даже атомов.

Положение о том, что все частицы, обладающие конечным импульсом P, обладают волновыми свойствами, и их движение сопровождается некоторыми волновыми процессами, стало одним из базовых.

В 1926 г. австрийский физик Э. Шредингернашел математическое уравнение, определяющее поведение волн материи, так называемое уравнение Шредингера. Анализ явлений микромира проводится на языке понятий классической физики, таких как волна и частица. Проблема здесь состоит в том, что эти классические понятия отражают свойства объектов микромира неполно и односторонне.

В квантовой механике вектором состояния является волновая функция ψ. В аппарат квантовой теории прочно вошло в качестве ее основного уравнения уравнение Шредингера относительно волновой функции ψ. Волновая функция ψ стала интерпретироваться как волна вероятности, а квадрат ее модуля – как мера вероятности обладания микрообъектом определенной координаты или в другой, дополнительной к первой, физической ситуации – определенного импульса. Казалось бы, что о причинно-следственном описании движения объектов следует забыть. Однако это не так. Уравнение Шредингера описывает эволюции ψ-функции с течением времени, является детерминированным и обратимым. Однако в квантовой теории предсказуемы только вероятности, а не отдельные события, в отличие от классической механики. Волновая функция представляет собой полную характеристику состояния: зная волновую функцию ψ, можно вычислить вероятность обнаружения определенного значения физической величины и средние значения физических величин. Статистические закономерности в классической физике являются результатом взаимодействия большого числа частиц, поведение каждой из которых описывается законами классической механики. Если система состоит из малого числа частиц, то статистические закономерности перестают действовать и понятия теряют смысл. В квантовой же механике, согласно экспериментам, статистические закономерности отражают свойства каждой отдельной микрочастицы.

В 1927 г. английский физик П. Дирак, рассматривая уравнение Шредингера, обратил внимание на его нерелятивистский характер. При этом квантовая механика описывает объекты микромира, и хотя к 1927 г. их было известно только три – электрон, протон и фотон (даже нейтрон был экспериментально обнаружен только в 1932 г.), – было ясно, что движутся они со скоростями, весьма близкими к скорости света или равными ей, и более адекватное описание их поведения требует применения специальной теории относительности. Дирак составил уравнение, которое описывало движение электрона с учетом законов и квантовой механики, и теории относительности Эйнштейна, и получил формулу для энергии электрона, которой удовлетворяли два решения: одно решение давало известный электрон с положительной энергией, другое – неизвестный электрон-двойник, но с отрицательной энергией. Так возникло представление о частицах и соответствующих им античастицах, о мирах и антимирах. К этому же времени была разработана квантовая электродинамика. Суть ее состоит в том, что поле более не рассматривается как континуальная непрерывная среда. Дирак применил к теории электромагнитного поля правила квантования, в результате чего получил дискретные значения поля. Обнаружение античастиц углубило представление о поле. Считалось, что электромагнитного поля нет, если нет квантов этого поля – фотонов. Следовательно, в этой области пространства должна быть пустота. Ведь специальная теория относительности “изгнала” из теории эфир, можно сказать, что победила точка зрения о вакууме, опустоте. Но пуст ли вакуум – вот вопрос, который вновь возник в связи с открытием Дирака. Сейчас хорошо известны эффекты, доказывающие, что вакуум пуст только в среднем. В нем постоянно рождается и исчезает огромное количество виртуальных частиц и античастиц. Даже если мы меряем заряд электрона, то, как оказалось, голый заряд электрона равнялся бы бесконечности. Мы же измеряем заряд электрона в “шубе” окружающих его виртуальных частиц.

Смелая мысль Л. де Бройля о всеобщем “дуализме” частицы и волны позволила построить теорию, с помощью которой можно было охватить свойства материи и света в их единстве. Кванты света становились при этом особым моментом всеобщего строения микромира.

Волны материи, которые первоначально представлялись как наглядно-реальные волновые процессы по типу волн акустики, приняли абстрактно-математический облик и получили благодаря немецкому физику М. Борну символическое значение как “волны вероятности”.

Однако гипотеза де Бройля нуждалась в опытном подтверждении. Наиболее убедительным свидетельством существования волновых свойств материи стало обнаружение в 1927 г. дифракции электронов американскими физиками К. Дэвисоном и Л. Джермером. В дальнейшем были выполнены опыты по обнаружению дифракции нейтронов, атомов и даже молекул. Во всех случаях результаты полностью подтверждали гипотезу де Бройля. Еще более важным было открытие новых элементарных частиц, предсказанных на основе системы формул развитой волновой механики.

Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Тот факт, что один и тот же объект проявляется и как частица и как волна, разрушал традиционные представления. Форма частицы подразумевает сущность, заключенную в малом объеме или в конечной области пространства, тогда как волна распространяется по его огромным областям. В квантовой физике эти два описания реальности являются взаимоисключающими, но равно необходимыми для того, чтобы полностью описать рассматриваемые явления.

Квантово-механическое описание микромира основывается на соотношении неопределенностей, установленном немецким физиком В. Гейзенбергом, и принципе дополнительности Н. Бора.

Суть соотношения неопределенностей В. Гейзенберга заключается в следующем. Допустим, ставится задача определить состояние движущейся частицы. Если бы можно было воспользоваться законами классической механики, то ситуация была бы простой: следовало лишь определить координаты частицы и ее импульс (количество движения). Законы классической механики для микрочастиц применяться не могут: невозможно не только практически, но и вообще с одинаковой точностью установить место и величину движения микрочастицы. Только одно из этих двух свойств можно определить точно. В своей книге «Физика атомного ядра» В. Гейзенберг раскрывает содержание соотношения неопределенностей. Он пишет, что никогда нельзя одновременно точно знать оба параметра – координату и скорость. Никогда нельзя одновременно знать, где находится частица, как быстро и в каком направлении она движется. Если ставится эксперимент, который точно показывает, где частица находится в данный момент, то движение нарушается в такой степени, что частицу после этого невозможно найти. И наоборот, при точном измерении скорости нельзя определить место расположения частицы.

С точки зрения классической механики, соотношение неопределенностей представляется абсурдом. Чтобы лучше оценить создавшееся положение, нужно иметь в виду, что мы, люди, живем в макромире и, в принципе, не можем построить наглядную модель, которая была бы адекватна микромиру. Соотношение неопределенностей есть выражение невозможности наблюдать микромир, не нарушая его. Любая попытка дать четкую картину микрофизических процессов должна опираться либо на корпускулярное, либо на волновое толкование. При корпускулярном описании измерение проводится для того, чтобы получить точное значение энергии и величины движения микрочастицы, например, при рассеивании электронов. При экспериментах, направленных на точное определение места, напротив, используется волновое объяснение, в частности, при прохождении электронов через тонкие пластинки или при наблюдении отклонения лучей.

Существование элементарного кванта действия служит препятствием для установления одновременно и с одинаковой точностью величин “канонически связанных”, то есть положения и величины движения частицы.

Фундаментальным принципом квантовой механики, наряду с соотношением неопределенностей, является принципдополнительности, которому Н. Бор дал следующую формулировку: «Понятие частицы и волны дополняют друг друга и в то же время противоречат друг другу, они являются дополняющими картинами происходящего» (см.:Гернек, Ф.Пионеры атомного века / Ф. Гернек. – М.: Прогресс, 1974. – С. 267).

Противоречия корпускулярно-волновых свойств микрообъектов являются результатомнеконтролируемого взаимодействия микрообъектов и макроприборов. Имеется два класса приборов: в одних квантовые объекты ведут себя как волны, в других – подобно частицам. В экспериментах мы наблюдаем не реальность как таковую, а лишь квантовое явление, включающее результат взаимодействия прибора с микрообъектом. М. Борн образно заметил, что волны и частицы – это “проекции” физической реальности на экспериментальную ситуацию.

С теоретической точки зрения, микрообъекты, для которых существенным является квант действия М. Планка, не могут рассматриваться так же, как объекты макромира, ведь для них планковская константа h из-за ее малой величины не имеет значения. В микромире корпускулярная и волновая картины сами по себе не являются достаточными, как в мире больших тел. Обе “картины” законны, и противоречие между ними снять нельзя. Поэтому корпускулярная и волновая картины должны дополнять одна другую, то есть быть комплементарными. Только при учете обоих аспектов можно получить общую картину микромира.

Квантовая теория поля является ядром всей современной физики, представляет собой общий подход ко всем известным типам взаимодействий. Одним из важнейших результатов ее является представление о вакууме, но уже не пустом, а насыщенном всевозможными флуктуациями всевозможных полей. Вакуум в квантовой теории поля определяется как наинизшее энергетическое состояние квантованного поля, энергия которого равна нулю только в среднем. Так что вакуум – это “Нечто” по имени “Ничто”.

Релятивистская квантовая теория поля, которая началась работами П. Дирака, В. Паули, В. Гейзенберга в конце 20-х гг. двадцатого столетия, была продолжена в трудах Р. Фейнмана, С. Томонаги, Дж. Швингера и других ученых. Принцип целостности находит свое выражение в рассмотрении взаимодействия микрообъектов с определенным состоянием физического вакуума. Именно в этом взаимодействии все элементарные частицы обнаруживают свои свойства. Вакуум рассматривается как объект физического мира, выражающий как раз момент его физической неразложимости.

В результате квантово-полевой исследовательской программы создана новая квантово-механическая картина мира, выработан новый стиль мышления ученых, новый тип научной рациональности, называемый неклассическим, в котором есть место случайности, вероятности, целостности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]