Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matematika.docx
Скачиваний:
25
Добавлен:
18.04.2015
Размер:
825.62 Кб
Скачать

Билет №37

Ax + By + C (> 0).

Вектор = (А; В) - нормальный вектор прямой.

В векторном виде: + С = 0, где - радиус-вектор произвольной точки на прямой

Частные случаи:

1) By + C = 0 - прямая параллельна оси Ox;

2) Ax + C = 0 - прямая параллельна оси Oy;

3) Ax + By = 0 - прямая проходит через начало координат;

4) y = 0 - ось Ox;

5) x = 0 - ось Oy.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

xcosj + ysinj - p = 0 – нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Билет №38

Уравнение прямой, проходящей через заданную точку в заданном направлении.

Рассмотрим снова прямую L. Ее положение вполне определяется заданием угла a (Ox, L) и точки М(х ,у ), лежащей на этой прямой.

В качестве направляющего вектора возьмем единичный вектор

Проверим, будет ли этот вектор единичным?

Его длина

Тогда каноническое уравнение прямой будет иметь вид:

получим у-у1 = k(х – х1) – это прежнее уравнение прямой с угловым коэффициентом.

Уравнение прямой, проходящей через две данные точки.

Пусть на плоскости даны М1(х1у1) и М2(х2у2). Составим каноническое уравнение прямой, проходящей через эти две точки в качестве направляющего вектора S возьмем M1M2

- это уравнение прямой, проходящей через две данные точки (х1 у1) и (х2, у2)

Билет №39

Если прямые и заданы уравнениями с угловым коэффициентом

Где и , и углы наклона прямых к оси ,то для угла между прямыми справедливо равенство:

Тогда

Итак, острый угол между двумя прямыми определяется по формуле

- условие параллельности двух прямых;

(или - условие перпендикулярности двух прямых

Билет №40

Эллипсом ( рис.1 ) называется геометрическое место точек, сумма расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами эллипса, есть величина постоянная.

Уравнение эллипса

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ ( рис.1 ) , при a < b фокусы эллипса лежат на оси ОY , а при a = b эллипс становится окружностью ( фокусы эллипса в этом случае совпадают с центром окружности ). Таким образом, окружность есть частный случай эллипса.

Отрезок F1F2 = 2 с , где

называется фокусным расстоянием. Отрезок AB = 2 a называется большой осью эллипса, а отрезок CD = 2 b – малой осью эллипса. Число e = c / a , e < 1 называется эксцентриситетом эллипса.

Пусть Р ( х1 , у 1 ) – точка эллипса, тогда уравнение касательной к эллипсу в данной точке имеет вид:

Условие касания прямой y = m x + k и эллипса х^2 / a^2 + у^ 2 / b^2 = 1 :

K^2 = m^2 *a^2 + b^2 .

Билет №41

Гиперболой называется геометрическое место точек, для которых разность расстояний до двух фиксированных точек плоскости, называеых фокусами, есть постоянная величина; указанная разность берется по абсолютному значению и обозначается через2а. Фокусы гиперболы обозначают буквами и расстояние между ними - через 2с. По определению гиперболы , или

Пусть дана гипербола. Если оси декатовой прямоугольной системы координат выбраны так, что фокусы данной гиперболы располагаются на оси абсцисс симметрично относительно начала координат, то в этой системе координат уравнение гиперболы имеет вид

Где Уравнение вида (1) называется каноническим уравнением гиперболы. При указанном выборе системы координат оси координат являются осями симметрии гиперболы, а начало координат - ее центром симметрии (рис.). Оси симметрии гиперболы называются просто ее осями, центр симметрии - центром гиперболы. Гипербола пересекает одну из своих осей; точки пересечения называются вершинами гиперболы. На рис. Вершины гиперболы суть точки А’ и А.

Прямоугольник со сторонами 2а и 2b, расположенный симметрично относительно осей гиперболы и касающийся ее в вершинах, называется основным прямоугольником гиперболы.

Отрезки длиной 2a и 2b, соединяющие середины сторон основного прямоугольника гиперболы, также называют ее осями. Диагонали основного прямоугольника (неограниченно продолженного) являются асимптотами гиперболы, их уравнения суть

,

Уравнение

определяет гиперболу, симметричную относительно координатных осей, с фокусами на оси ординат; уравнение (2), как и уравнение (1), называется каноническим уравнением гиперболы; в этом случае постоянная разность расстояний от произвольной точки гиперболы до фокусов равна 2b.

Две гиперболы, которые определяются уравнениями

,

в одной и той же системе координат, называются сопряженными.

Гипербола с равными полуосями (a=b) называется равносторонней; ее каноническое уравнение имеет вид

или

Число

где а - расстояние от центра гиперболы до ее вершины, называется эксцентриситетом гиперболы. Очевидно, для любой гиперболы . Если М(x; y) - произвольная точка гиперболы, то отрезки и называются фокальными радиусами точки М. Фокальные радиусы точек правой ветви гиперболы вычисляются по формулам

,

фокальные радиусы точек левой ветви - по формулам

,

Если гипербола задана уравнением (1), то прямые, определяемые уравнениями

,

называются ее директрисами Если гипербола задана уравнением (2), то директрисы определяются уравнениями.

,

Каждая директриса обладает следующим свойством: если r - расстояние от произвольной точки гиперболы до некоторого фокуса, d - расстояние от той же точки до односторонней с этим фокусом директрисы, то отношение r/d есть постоянная величина, равная эксцентрисистету гиперболы:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]