Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
практика.doc
Скачиваний:
338
Добавлен:
17.03.2015
Размер:
951.3 Кб
Скачать

Правила обращения с животными после эксперимента.

Экспериментатор обязан сам выполнять и контролировать соблюдение правил обращения с подопытными животными не только в период, предшествующий эксперименту, и в ходе эксперимента, но и после его завершения — при выведении животного из эксперимента. Так, при доставке животного в клетку после операции должны использоваться удобные носилки, исключающие нанесение животному травм, смещение повязок. В случае применения миорелаксантов и искусственного дыхания животное должно оставаться в лаборатории до полного восстановления дыхания. Грызуны, получившие травмы при взятии крови из хвостовой вены, отсаживаются в отдельную клетку во избежание покусов сородичей.

Животное в хроническом опыте необходимо поместить в удобную клетку, облегчающую условия наблюдения и ухода. Прооперированное животное должно получать квалифицированный уход под контролем экспериментатора. Послеоперационный период является критическим для хирургического эксперимента. В этот период требуется проведение необходимого обезболивания и медикаментозных назначений, а в некоторых случаях и длительное присутствие самого исследователя или его помощника около животного. После особо сложных и ответственных операций рекомендуется в первое время устанавливать круглосуточное дежурство. Состояние животного и назначения препаратов должны отмечаться в протоколе эксперимента.

Проведение экспериментов в условиях, предусматривающих использование стандартизованных животных в опытах, исключающих все стрессовые и любые другие воздействия, отличные от изучаемых, обеспечение надлежащего ухода за животными до начала эксперимента и после его окончания, обеспечение в случае необходимости адекватного послеоперационного ухода — все это создает предпосылки для получения результатов, сопоставимых с данными других исследователей.

14. Методы изучения цнс и внд.

ЦНС

  1. Хирургические (экстирпация, перерезка)

Метод разрушения (экстирпации) различных отделов ЦНС. С помощью этого метода можно установить, какие функции ЦНС выпадают после оперативного вмешательства, а какие сохраняются. Например, кошка, мозг которой рассечён выше таламуса, сохраняет многие позные реакции и спинномозговые рефлексы. Животное, мозг которого рассечён на уровне ствола мозга (децеребрированное), поддерживает тонус мышц-разгибателей, но утрачивает позные рефлексы. Метод перерезки дает возможность изучить значение в деятельности того или иного отдела ЦНС влияний, поступающих от других ее отделов. Перерезка производится на различных уровнях ЦНС. Полная перерезка разобщает вышележащие отделы центральной нервной системы от нижележащих и позволяет изучить:

1. Рефлекторные реакции, которые осуществляются нервными центрами, расположенными ниже места перерезки; 2. Какие импульсы для деятельности данной структуры имеют вышележащие отделы; 3. Значение сигналов от нижележащих отделов для деятельности вышележащих. Спиналыюе животное. Перерезка па уровне верхних сегментов спинного мозга (не выше 3-4 сегмента). Бульбарное животное отделяет продолговатый мозг от среднего. Мезэнцефальное животное. Перерезка между средним и промежуточным мозгом. Диэнцефальное животное - отделяет промежуточный мозг от больших полушарий. Недостатки метода. Очень грубое вмешательство, операционная травма влияет на функции ЦНС (боль, отек, воспаление), образующаяся рубцовая ткань раздражает окружающие ткани (могут быть даже эпиприпадки при разрушении отдельных участков мозга). Поэтому применяют локальные (ограниченные) повреждения: термокриокоагуляция, электролиз постоянным током, а также мощным пучком рентген-излучения, ультразвуком.

  1. Стимуляция (электрическая, фармакологическая)

Одним из методов изучения функций мозга является электрическая стимуляция отдельных областей. С помощью этого метода был, например, исследован «моторный гомункулус» — было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение руки, стимулируя другие точки — движения ног и т. д. Полученную таким образом карту и называют гомункулусом. Разные части тела представлены различающимися по размеру участками коры мозга. Поэтому у гомункулуса большое лицо, большие пальцы и ладони, но маленькое туловище и ноги.

Если же стимулировать сенсорные области мозга, то можно вызвать ощущения. Это было показано как на человеке (в знаменитых опытах Пенфилда: он показал, что при электрическом раздражении 18 и 19-го полей у больного появляются сложные зрительные образы. Это уже не отдельные вспышки света, а знакомые лица, картины. Клинические наблюдения показывают, что поражение этих областей коры и прилегающих к ним подкорковых зон приводит к различным нарушениям зрительного гнозиса), так и на животных.

В настоящее время для стимуляции мозга широко используется неинвазивный метод фокальной магнитной стимуляции. Проблема с этим методом состоит в том, что он активирует довольно большие участки мозга, а в некоторых случаях требуется стимулировать локальные участки.

  1. Выключение (блокады)

Суть та же, что и в хирургических. Могут быть фармакологические и физические. Пример: методы холодового выключения структур головного мозга дают возможность визуализировать пространственно-временную мозаику электрических процессов мозга при образовании условного рефлекса в разных функциональных состояниях.

  1. Электрофизиология (ВП, ЭЭГ)

Метод электроэнцефалографии— метод регистрации электроэнцефалограммы (ЭЭГ) — суммарной электрической активности, отводимой с поверхности головы. М. э. рассматривается как наиболее распространенный и адекватный для изучения нейрофизиологических основ психической деятельности. Многоканальная запись ЭЭГ позволяет одновременно регистрировать электрическую активность многих функционально различных областей коры. ЭЭГ отводится с помощью специальных электродов (чаще серебряных), которые фиксируются на поверхности черепа шлемом или крепятся клеящей пастой. Поскольку ЭЭГ отражает разность потенциалов между двумя точками, для выяснения активности отдельных корковых областей используют индифферентный электрод, помещенный чаще всего на мочке уха. Это так называемое монополярное отведение. Наряду с этим анализируется разность потенциалов между двумя активными точками (биполярное отведение). Независимо от способа регистрации в ЭЭГ выделяются следующие типы ритмических колебаний: дельта-ритм ниже 3,5 Гц; тета-ритм 4—7,5 Гц; альфа ритм 8—13,5 Гц (это основной ритм ЭЭГ, преимущественно выраженный в каудальных отделах коры — затылочной и теменной); бета-ритм выше 14 Гц; гамма-колебания — выше 35 Гц.

Эти ритмы различаются не только по своим частотным, но и функциональным характеристикам. Их амплитуда, топография, соотношение являются важным диагностическим признаком и критерием функционального состояния различных областей коры при реализации психической деятельности.

Анализ ЭЭГ осуществляется как визуально, так с помощью ЭВМ. На ЭВМ оцениваются параметры отдельных ритмических компонентов ЭЭГ, их спектр плотности мощности (СПМ)

Метод вызванных потенциалов— регистрация суммарной электрической активности, возникающей в ответ на внешние воздействия, — вызванные потенциалы (ВП) — отражает изменения функциональной активности областей коры, осуществляющих прием и обработку поступающей информации. Вызванный потенциал представляет собой последовательность разных по полярности — позитивных и негативных компонентов, возникающих после предъявления стимула. Количественными характеристиками ВП являются латентный период (время от начала стимула до максимума каждого компонента) и амплитуда компонентов. Метод регистрации ВП широко используется при анализе процесса восприятия.

Нейрофизиологические исследования положили начало широкому использованию ВП человека для анализа когнитивных процессов.

У человека ВП имеют относительно небольшую амплитуду по сравнению с фоновой ЭЭГ, и их изучение стало возможно только при использовании компьютерной техники для выделения сигнала из шума и последующего накопления реакций, возникающих в ответ на ряд однотипных стимулов. ВП, регистрируемые при предъявлении сложных сенсорных сигналов в решении определенных когнитивных задач, получили название связанных с событиями потенциаловССП.

ВНД

  1. Условные рефлексы

Психическая работа мозга долго оставалась недоступной для естествознания в целом и для физиологии в частности. Главным образом потому, что о ней судили по ощущениям и впечатлениям, т.е. с помощью субъективных методов. Успех в этой области знаний определился тогда, когда о психической деятельности (ВНД) стали судить с помощью объективного метода условных рефлексов разной сложности выработки. В начале XX века Павловым была разработана и предложена методика выработки условных рефлексов. На основе этой методики возможны дополнительные приемы изучения свойств ВНД и локализации процессов ВНД в головном мозге. Из всех приемов наиболее часто используются следующие приемы:

Пробы возможности образования разных форм условных рефлексов (на высоту тона звука, на цвет и т.д.), что позволяет судить о условиях первичного восприятия. Сопоставления этих границ у животных разных видов позволяет выявить: в каком направлении шла эволюция сенсорных систем ВНД.

Онтогенетическое изучение условных рефлексов. Сложное поведение животных разных возрастов при его изучении позволяет установить, что в этом поведении является врожденным, а что приобретенным. Например, Павлов брал щенков одного помета и вскармливал одних мясом, а других молоком. По достижению зрелого возраста вырабатывал у них условные рефлексы, и оказалось, что у тех собак, которые с детства получали молоко, условные рефлексы вырабатывались на молоко, а у тех собак, которых с детства кормили мясом, условные рефлексы легко вырабатывались на мясо. Таким образом, строгого предпочтения виду плотоядной пищи у собак нет, главное, что бы она была полноценной.

Филогенетическое изучение условных рефлексов. Сравнивая свойства условнорефлекторной деятельности животных разного уровня развития, можно судить: в каком направлении идет эволюция ВНД. В переходах беспозвоночные животные – позвоночные животные, позвоночные животные – человек отразились переломные этапы эволюции, связанные с возникновением и развитием ВНД (у насекомых нервная система неклеточного типа, у кишечнополостных – ретикулярного типа, у позвоночных – трубчатого типа, у птиц появляются бальные ганглии, некоторые обуславливают высокое развитие условнорефлекторной деятельности. У человека хорошо развита кора больших полушарий, что и обуславливает скачек.

Фармакологическое действие при формировании или переделке условных рефлексов. Вводя в мозг определенные вещества можно определить, какое влияние они имеют на скорость и прочность образования условных рефлексов, на способность к переделке условного рефлекса, что позволяет судить о функциональной подвижности ЦНС, а также на функциональное состояние нейронов коры и их работоспособность. Например, было выявлено, что кофеин обеспечивает образование условных рефлексов при высокой работоспособности нервных клеток, а при низкой их работоспособности даже небольшая доза кофеина делает возбуждение непосильным для нервных клеток.

Создание экспериментальной патологии условно-рефлекторной деятельности. Например, хирургическое удаление височных долей коры больших полушарий ведет к псической глухоте. Методом экстирпации выявляется функциональная значимость участков коры, подкорки и стволовых отделов мозга. Таким же образом определяют локализацию корковых концов анализаторов.

Моделирование процессов условно-рефлекторной деятельности. Еще Павлов привлекал математиков для того, чтобы выразить формулой количественную зависимость образования условного рефлекса от частоты его подкрепления. Оказалось, что большинства здоровых животных, включая человека, условный рефлекс вырабатывался у здоровых людей после 5 подкреплений безусловным раздражителем. Особенно это важно в служебном собаководстве и в цирке.

Сопоставление психологических и физиологических проявлений условного рефлекса. Поддержка произвольного внимания, полета, эффективность обучения.

Сопоставление психологических и физиологических проявлений с биоэлементами и морфологическими с биокинетическими: выработка белков памяти (S-100) или участков биологически активных веществ в формировании условных рефлексов. Доказано, что если ввести вазопроессии, то условные рефлексы вырабатываются быстрее (вазопрессии – нейро-гормон, вырабатываемый в гипоталамусе). Морфологические изменения структуры нейрона: голый нейрон при рождении и с денуритами у взрослого человека.

  1. Инструментальные рефлексы (Торндайк)

Отцом инструментальной формы научения считается Э. Торндайк, который еще в конце прошлого века назвал такую форму научения обучением "методом проб, ошибок и случайного успеха". Торндайк проводил опыты, в которых кошки и другие животные должны были нажимать на задвижки или тянуть за пружины, чтобы, открыв дверцу, выйти из ящика и получить снаружи пищу. Ящики были сделаны так, что пища была заметна. Голодная кошка, впервые посаженная в ящик, производит множество действий, в том числе тянется к пище через щели и скребет предметы, находящиеся внутри ящика. Наконец она случайно ударяет по запирающему механизму и выскакивает наружу. При последующих пробах действия кошки постепенно концентрируются вблизи этого механизма, и другая активность со временем прекращается. Наконец кошка становится способной правильно вести себя, как только ее поместят в ящик.

Обстоятельства и ситуации в которые попадают животные вынуждают их совершать те или иные формы поведения, приспосабливаясь или активно сопротивляясь. Ученые назвали такое поведение оперантным (от латинского operatio - действие). Действия животных приводят к каким-либо последствиям или результатам, от которых зависит, будут ли они повторять эти действия или избегать их. То есть инструментальные условные рефлексы строятся на основе активной целенаправленной деятельности животного. Последовательность событий и результат их в данном случае, зависят не только от внешней сигнализации, но и от поведения самого животного. Таким образом, первое отличие инструментального условного рефлекса от классического заключается в активной, целенаправленной деятельности обучающегося животного. Вторым отличием является то, что инструментальный рефлекс не воспроизводит лежащую в его основе безусловную реакцию, в то время как классический условный рефлекс частично или полностью воспроизводит ее. При классических условных рефлексах связь устанавливается между стимулами и результатом, а при инструментальном научении, она возникает между реакцией и результатом. Таким образом, действие животного приобретает сигнальную функцию по отношению к результату (подкреплению). 3. Электрофизиология (ЭЭГ, компьютерная томография, ПЭТ, ЯМР)

Компьютерная томография (КТ)новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или "ломтик" этой части тела. Томографическое изображение — это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.           Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап — построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор нейротомограф.           Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представление о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.           В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.

Ядерно-магнитно-резонансная томография мозга.Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.           ПриЯМР-томографииполучение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физикохимического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения "срезов" мозга в различных плоскостях.Позитронно-Эмиссионная трансаксиальная Томография (ПЭТ-сканеры)сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитронизлучающие изотопы ("красители"), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного "красителя". Излучения этого "красителя" преобразуют в изображения на дисплее.           С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на "срезах" мозга регионального обмена веществ и кровотока.           В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили названиеметода функционального магнитного резонанса (ФМР)(см. Видео).