Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

4 курс / Общая токсикология (доп.) / Медицина_экстремальных_ситуаций_Часть_3_Военная_токсикология_и_токсикология

.pdf
Скачиваний:
6
Добавлен:
24.03.2024
Размер:
3.64 Mб
Скачать

ную кислоту в качестве отравляющего вещества, в гитлеровских лагерях уничтожения фашисты применяли ядовитые газы циклоны (эфиры цианмуравьиновой кислоты, рис. 23), американские войска в Южном Вьетнаме использовали против мирного населения токсичные органические цианиды.

Рисунок 23 – Циклон, использовавшийся в концлагере Освенцим

HC≡N, синильная кислота (цианистый водород), условный шифр «AC» (США). Синильная кислота впервые получена в 1872 г. К. Шееле (Швеция). HCN представляет собой бесцветную, прозрачную и очень подвижную жидкость со своеобразным запахом, напоминающим запах горького миндаля. Плотность пара по воздуху 0,947. Температура кипения +25,7˚С, при -13,3˚С безводная синильная кислота затвердевает.

Синильная кислота во всех соотношениях смешивается с водой и растворяется в большинстве органических растворителей. При взаимодействии с водой очень медленно гидролизуется.

Одним из важных свойств синильной кислоты является способность взаимодействовать с веществами, содержащими карбонильную группу, например с альдегидами и кетонами. Продуктами реакций являются циангидрины.

Взаимодействие синильной кислоты с формальдегидом используется для дегазации ОВ, а взаимодействие с глюкозой – для профилактики и лечения отравлений. Для обезвреживания АС в организме возможно использование веществ, легко реагирующих с ним с образованием нетоксичных продуктов: коллоидную серу и тиосульфат натрия (Na2S2O3), превращающих цианиды в нетоксичную роданистоводородную кислоту.

171

Синильная кислота со щелочами образует соли – цианиды (KCN, NaCN). Цианиды – это твердые кристаллические вещества, очень ядовитые.

Кислородом воздуха АС не окисляется, но, будучи подожжена, хорошо горит.

АС термически устойчива, но ее пары образуют с воздухом взрывоопасные смеси. Жидкая АС при детонации взрывается, подобно нитроглицерину. Парообразная синильная кислота легко сорбируется резинотехническими изделиями, шерстяными, текстильными и кожаными материалами, соломой. Синильная кислота легко проникает в пористые строительные материалы, дерево, через неповрежденную яичную скорлупу, адсорбируется многими пищевыми продуктами.

Имеется немало данных, свидетельствующих об образовании цианидов в организме человека в физиологических условиях. Цианиды эндогенного происхождения обнаружены в биологических жидкостях, в выдыхаемом воздухе, в моче. Считается, что нормальный их уровень в плазме крови может достигать 140 мкг/л. В связи с этим должен быть упомянут и витамин В12 (цианокобаламин), необходимый организму для нормального кроветворения и функционирования нервной системы, печени и других органов.

Хлорциан Cl-C≡N (хлорангидрид циановой кислоты). Шифр в армии США – «CK». Образуется при взаимодействии синильной кислоты с хлором. Хлорциан – быстродействующее ОВ, обладающее общеядовитым действием и вызывающее раздражение слизистых оболочек глаз и верхних дыхательных путей. Хлорциан является важным продуктом промышленного органического синтеза. Он используется как исходное вещество для получения гербицидов и красителей триазинового ряда. В период первой мировой войны СК применялся французскими войсками в смеси с треххлористым мышьяком под названием «витрит». В настоящее время он не состоит на вооружении иностранных армий, однако, учитывая наличие производственных мощностей, нельзя исключать возможность его применения как самостоятельно, так и в смеси с АС.

Хлорциан – бесцветная жидкость с резким раздражающим

172

запахом, тяжелее воздуха (плотность по воздуху 2,1). Температура кипения 12,6˚С, температура замерзания -6,5˚С. Ограниченно растворим в воде (7% при температуре 20˚С) и хорошо – в органических растворителях. Остальные свойсва хлорциана схожи с таковыми синильной кислоты.

Токсикологическая характеристика. Синильная кислота поражает организм при вдыхании ее пара, при приеме с водой и продуктами питания, путем резорбции через кожу, при попадании в кровь через раневые поверхности. Наибольшую опасность представляет вдыхание пара синильной кислоты. LCt100 = 2 мг л/мин. Пребывание в течение 5–10 минут с надетым противогазом в зараженной атмосфере с концентрацией АС 7–12 мг/л смертельно опасно для жизни. Пероральная токсодоза АС для

человека LD100 = 1 мг/кг, для цианистого натрия LD50 = 1,8 мг/кг, для цианистого калия LD50 = 2,4 мг/кг. Для хлорциана начальная

раздражающая концентрация составляет 0,002 мг/л; непереносимая, вызывающая обильное слезотечение и спазм век – 0,06 мг/л. Концентрация 0,4 мг/л при экспозиции 10 минут может вызвать смертельный исход.

7.2 МЕХАНИЗМ ТОКСИЧЕСКОГО ДЕЙСТВИЯ И ПАТОГЕНЕЗ ИН-

ТОКСИКАЦИИ

Цианиды угнетают окислительно-восстановительные процессы в тканях, нарушая последний этап передачи протонов (Н+) и электронов (е) цепью дыхательных ферментов от окисляемых субстратов на кислород, вследствие чего развивается тканевая гипоксия.

Дыхание является одним из самых распространенных способов запасания энергии, которым обладает большинство организмов. Как известно, в организме человека в процессе дыхания энергия запасается по механизму окислительного фосфорилирования. Источником запасаемой в форме АТФ энергии является биологическое окисление субстратов, образующихся в ходе метаболизма питательных веществ, поступающих из окружающей среды. Процесс биологического окисления (рис. 24) состоит в отщеплении с помощью ферментов дегидрогеназ от субстратов биологического окисления (изоцитрата, малата, сукцината, α-кетоглютарата), образующихся в цикле трикарбоновых кислот, атомов водорода и переносе их в форме протонов и электронов

173

по цепи дыхательных ферментов на кислород. В цепи передачи протонов и электронов имеется перепад электрохимического потенциала. В точках наибольших перепадов редокспотенциалов происходят, согласно хемиосмотической гипотезе Питера Митчелла (1961 г.), реакции сопряженного окислительного фосфорилирования с образованием АТФ. Этот процесс происходит на внутренней мембране митохондрий, в которой, в строго определенной очередности, расположены компоненты дыхательной цепи (электрон-транспортная система) и катализирующий образование АТФ фермент (АТФ-синтаза). В дыхательной цепи осуществляются реакции, представляющие собой биохимический аналог горения водорода. Дыхательная цепь – это последовательность связанных друг с другом окислительно-восстанови- тельных пар молекул-переносчиков протонов и электронов, электрохимический потенциал которых постепенно снижается. При таком «постепенном» окислении организму удается обеспечить высокий КПД утилизации химической энергии, запасенной в окисляющихся субстратах (в форме АТФ утилизируется ≈ 42% энергии, около 58% рассеивается в форме тепла).

174

Рисунок 24 – Механизм нарушения биологического окисления синильной кислотой

Компоненты дыхательной цепи представлены переносчиками протонов, чередующимися с переносчиками электронов. Поскольку транспорт электронов и транспорт Н+ является сопряженным и эквивалентным процессом, дыхательную цепь можно рассматривать как цепь переноса электронов (электронтранспортную цепь). Ее основными компонентами являются: флавопротеины, железосерные белки (Fe/S-белок), хиноны (убихинон) и цитохромы. Цитохромы являются переносчиками е непосредственно на молекулярный кислород. В процессе биологического окисления наиболее важную роль играют цитохромы b, c1, c, aa3. Все они имеют простетическую геминовую группу, близкую к гему гемоглобина. Атом Fe в геме участвует в переносе электронов, при этом валентность железа обратимо изменяется (с 2-валентного на 3-валентное):

175

е

гем-Fe2+ ↔ гем-Fe3+

Цитохромы b, c1, c выполняют функцию промежуточных переносчиков электронов, а цитохром aa3 (называется цитохромоксидазой) является терминальным тканевым дыхательным ферментом, осуществляющим передачу электронов на кислород, доставляемый к тканям кровью.

Установлено, что циан-ионы (CN-) с током крови достигают тканей, где вступают во взаимодействие с трехвалентной формой Fe цитохрома а3 цитохромоксидазы (с Fe2+ цианиды не взаимодействуют). Функциональная единица цитохромоксидазы состоит из 4-х единиц гема «a», 2-х единиц гема «a3». Цианиды реагируют в основном с цитохромом «a3» и лишь частично с цитохромом «a». Последнее может служить объяснением известному факту, что в условиях отравления синильной кислотой не наблюдается тотального угнетения тканевого дыхания. Сохранившуюся окислительную активность принято обозначать как «цианрезистентное» дыхание. При стремительно развивающейся интоксикации цианрезистентное дыхание не может обеспечить выживаемость животного организма, однако при замедленном развитии отравления значение цианрезистентного дыхания может значительно возрастать. Соединившись с цианидом, цитохромоксидаза утрачивает способность переносить электроны на молекулярный кислород. Это приводит к мгновенному восстановлению всей цепи дыхательных ферментов «выше» выведенного из строя звена. При этом транспорт электронов и Н+ по цепи переносчиков прекращается, нарушается процесс синтеза макроэргов (АТФ), развивается тканевая гипоксия. Кислород с артериальной кровью доставляется к тканям в достаточном количестве, но ими не усваивается и переходит в неизмененном виде в венозное русло.

7.3 ДИАГНОСТИКА ПОРАЖЕНИЯ

При постановке диагноза поражения (отравления) ОВ общеядовитого действия, как и в случае других отравлений, используются следующие методы:

1. Ситуационное исследование, т.е. изучение обстоя-

тельств, приведших к возникновению поражения. При этом не-

176

обходимо последовательно и тщательно выявить все обстоятельства, которые предшествовали или сопутствовали возникновению массовых отравлений. В условиях войны проведение ситуационных исследований массовых отравлений обычно требуется в тех случаях, когда химическая разведка окружающей среды не выявила наличия в ней известных ОВ.

2.В ходе эпидемиологического обследования необходимо выяснить: число пострадавших, какая существует связь между пострадавшими (военная, бытовая и т.д.), распределение пострадавших по территории, находились ли они на территории, зараженной ОВ, выяснить возможность воздействия на пострадавших ОВ через воду, пищу и другие предметы.

3.Важное значение имеет химическое исследование среды, окружающей человека до возникновения у него отравления, а также предметов, с которыми он приходил в контакт до этого. В военное время химическое исследование окружающей среды осуществляется путем проведения химической разведки с использованием табельных средств индикации ОВ. При этом важно установить границы зоны химического заражения.

4.Клиническая диагностика. Различают молниеносную и замедленную форму интоксикации. При поступлении яда в организм в большом количестве смерть может наступить почти мгновенно. Пораженный сразу теряет сознание, дыхание становится частым и поверхностным, пульс учащен, аритмичен, затем происходит остановка дыхания и наступает смерть. Прогноз для жизни при развитии молниеносной формы поражения является неблагоприятным. Отравление развивается крайне быстро, и медицинская помощь обычно запаздывает. Наиболее типична замедленная форма отравления цианидами, которая делится по степеням тяжести.

Легкую степень отравления характеризуют главным образом субъективные расстройства: неприятный вкус во рту, чувство горечи, общая слабость, головокружение. Несколько позже возникают ощущение онемения слизистой рта, слюнотечение и тошнота. При малейших физических усилиях появляются одышка и сильная мышечная слабость, шум в ушах, затруднение речи, возможна рвота. После прекращения действия яда все неприятные ощущения ослабевают. Однако в течение 1–3 дней могут оставаться головная боль, мышечная слабость, тошнота и чувство

177

общей разбитости.

При интоксикации средней степени признаки отравления появляются вскоре после поступления яда в организм: вначале – приведенные выше субъективные расстройства, а затем – состояние возбуждения, чувство страха смерти. Слизистые и кожа лица приобретают алую окраску, пульс урежен и напряжен, артериальное давление повышается, дыхание становится поверхностным. При своевременном оказании помощи и удалении из зараженной атмосферы отравленный быстро приходит в сознание. В следующие дни отмечаются разбитость, недомогание, общая слабость, головная боль, неприятные ощущения в области сердца, тахикардия, лабильность артериального давления. Эти явления могут сохраняться 4–6 дней после поражения.

При тяжелых отравлениях поражение проявляется после очень короткого скрытого периода (минуты). Выделяют четыре стадии тяжелой интоксикации: начальная, диспноэтическая, судорожная и паралитическая.

Начальная стадия характеризуется в основном субъективными ощущениями – такими же, как при легкой степени отравления. Она довольно кратковременна и быстро переходит в следующую.

Для диспноэтической стадии типичны некоторые признаки кислородного голодания тканевого типа: алый цвет слизистых и кожных покровов, постепенно усиливающаяся слабость, общее беспокойство, боли в области сердца. У отравленного появляется чувство страха смерти, расширяются зрачки, пульс урежается, дыхание становится частым и глубоким. Последнее объясняется способностью цианидов, действуя на каротидный синус, возбуждать дыхательный центр.

В судорожной стадии состояние пораженного резко ухудшается. Появляется экзофтальм, дыхание становится аритмичным, редким, повышается артериальное давление, пульс еще бо-

лее урежается (изменения сердечно-сосудистой системы обусловлены рефлекторными воздействиями синильной кислоты на область каротидного синуса). В этой стадии возникают распространенные клонико-тонические судороги, возможен прикус языка. Сознание утрачивается, роговичный рефлекс вялый, зрачки на свет не реагируют. Тонус мышц повышен, сохраняется алая окраска кожных покровов и слизистых. Длительность этой

178

стадии может быть от нескольких минут до нескольких часов. Приступы судорог сменяются непродолжительной ремиссией, вслед за которой снова возможен рецидив.

При дальнейшем ухудшении состояния пораженного развивается паралитическая стадия. Судороги к этому времени прекращаются, у пораженного развивается глубокое коматозное состояние с полной утратой чувствительности и рефлексов, мышечной адинамией; вероятны непроизвольное мочеиспускание и дефекация. Дыхание редкое, неритмичное, затем наступает его полная остановка. Пульс частый, аритмичный, артериальное давление низкое. Спустя несколько минут после остановки дыхания прекращается и сердечная деятельность.

Последствия и осложнения характерны для тяжелых ин-

токсикаций. В течение нескольких недель после перенесенного поражения могут сохраняться стойкие и глубокие изменения нервно-психической сферы. Как правило, в течение 1–2 недель сохраняется астенический синдром. Пораженные жалуются на повышенную утомляемость, снижение работоспособности, головную боль, повышенную потливость, плохой сон. Могут наблюдаться парезы, параличи различных мышечных групп, затруднение речи, иногда нарушение психики. Из соматических осложнений на первом месте находится пневмония. Ее возникновению способствуют аспирация слизи и рвотных масс отравленными, длительное пребывание пациентов в лежачем положении.

Особенности поражения хлорцианом. Хлорциан является веществом, принадлежащим к группе ОВ общетоксического действия. Аналогично синильной кислоте, он вызывает нарушение тканевого дыхания. В отличие от последней хлорциан обладает заметным действием на дыхательные пути, напоминая ОВ удушающей группы. В момент контакта с хлорцианом наблюдаются явления раздражения дыхательных путей и слизистой глаз, при высоких концентрациях развивается типичная для цианидов картина острого отравления с возможным летальным исходом. В случае благополучного исхода цианидной интоксикации по окончании скрытого периода удушающего действия может развиться токсический отек легких.

7.4 АНТИДОТНОЕ ЛЕЧЕНИЕ

179

Антидоты синильной кислоты представлены несколькими группами веществ, которые в своем большинстве, вступая с синильной кислотой во взаимодействие, обезвреживают яд. При-

менение метгемоглобинообразователей было предложено на основе представления о механизме действия синильной кислоты. Еще в конце XIX века внимание токсикологов привлекло свойство метгемоглобина быстро присоединять к себе цианид-ион. Реакция взаимодействия метгемоглобина с цианид-ионом, приводящая к образованию нетоксичного комплекса – цианметгемоглобина, протекает по схеме:

нитрит

Hb(Fe2+) MtHb(Fe3+)+CN- CNMtHb(Fe3+).

Метгемоглобин не только связывает циркулирующий в крови цианид, но и освобождает от него заблокированный дыхательный фермент:

MtHb (Fe3+) + белок – R – Fe3+ - CN

ингибированная

цитохромоксидаза

CNMtHb(Fe3+) + белок – R – Fe3+.

активная

цитохромоксидаза

В качестве метгемоглобинообразователей используются следующие фармакологические препараты:

Амилнитрит (Amylium nitrosum) выпускается в ампулах с оплеткой по 1 мл, принимается путем ингаляции – раздавить легким нажатием тонкий конец ампулы и поднести к носу пораженного, в отравленной атмосфере ампулу с раздавленным концом вложить под маску противогаза для вдыхания. Амилнитрит оказывает кратковременное действие, поэтому через 10–12 мин. его дают повторно (до 3–5 раз, но не допуская коллапса).

Нитрит натрия (Natrium nitrosum). При отравлениях си-

нильной кислотой вводится внутривенно медленно в 1% растворе в количестве 10–20 мл.

Антициан в ампулах 20% – 1,0 мл. Вводится внутривенно (в 10–20 мл 40% глюкозы) или внутримышечно. При подкожном введении возможно возникновение некроза в месте введения

180

Соседние файлы в папке Общая токсикология (доп.)