Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5 курс / Пульмонология и фтизиатрия / Orphan_Lung_Diseases_A_Clinical_Guide_to_Rare.pdf
Скачиваний:
2
Добавлен:
24.03.2024
Размер:
74.03 Mб
Скачать

16  Primary Histiocytic Disorders of the Lung

271

 

 

ROSAI-DESTOMBES DORFMAN DISEASE TREATMENT REGIMENS

MAPK mutation/mutation

Irrespective of mutation

undetectable/testing unavailable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PREFERRED

 

 

 

 

 

 

 

 

 

 

Cladrabine

Cobimetinib

Cytarabine

 

 

 

Methotrexate (oral)

 

 

 

Prednisone or oth corticosteroid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OTHER

 

 

 

 

 

 

Trametinib

Vinblastine + prednisone

 

 

 

Methotrexate (IV)

Other Targeted Treatments

ALK fusion:

crizotinib

CSF1R mutation:

pexidartinib

NTRK fusion:

larotrecitinib or entrecitinib

PIK3CA mutation:

everolimus

RET fusion:

selpercatinib

* If associated with lymphoproliferative syndrome +/1 PIK3CA mutation: Sirolimus

Special circumstances irrespective of mutation

Nodal + cytopenias disease:

rituximab

Cutaneous dimmuneisease only:

Thalidomide

Fig. 16.15  Treatment algorithm for RDD. (Adapted from NCCN [22])

Prognosis

In general, the prognosis of RDD is good and nodal-limited disease typically has a benign course [1, 20, 34]. When RDD is extranodal and involving multiple systems, prognosis may be more guarded, although longitudinal studies are lacking [1, 34].

Conclusions

The histiocytic neoplasms that involve the lung are very rare diseases that can be a source of significant morbidity and mortality. The recent discoveries of mutations in the

MAPK pathways have offered important insight into disease pathogenesis, allowing for the reclassification of histiocytic syndromes as inflammatory monomyelocytic neoplasms. The disease-driving mutant cells of the histiocytic syndromes appear to be most consistent with immature myeloid precursors with arrested development due to mutations that occur at different nodes in the RAS/ MAPK/MEK/ERK and PI3K pathways. The identification of targetable mutations in PLCH, ECD, and RDD offers exciting new therapeutic options and genetic testing is now a key step in the evaluation of patients with these diseases.

272

M. Dalton et al.

 

 

Diagnostic Criteria for Primary Histiocytic Disorders of the Lung

(Adapted from NCCN Guidelines [22])

PLCH

•\ Even in the setting of highly suggestive clinical/radiological features, biopsy strongly recommended to con rm the diagnosis and to establish the mutational status

––Histology showing histiocytes with grooved nuclei, eosinophilia

––Immunohistochemistry reveals CD1a+, CD207 (Langerin)+, BRAF V600E(VE1)+/−

––Electron microscopy reveals Birbeck granules

––Genetic analysis may be useful in patients when pharmacotherapy is considered

No mutation identi ed BRAFV600E mutation Other MAPK gene mutation

––Vigilance

VE1 IHC positivity should be con rmed with a second molecular assay

Negative BRAFV600E mutational testing should be con rmed with a second genetic modality or biopsy from more than one site

•\ Other recommended studies, as appropriate

––Chest CT

––Pulmonary function testing

––Bone imaging if pain present

––Echocardiogram/right heart catheterization

––Endocrine studies for pituitary involvement

––MRI brain/pituitary/sella turcica

ECD

•\ Even in the setting of highly suggestive clinical/radiological features, biopsy strongly recommended to con rm the diagnosis and to establish the mutational status

––Histology reveals foamy histiocytes, giant cells, lymphoplasmacytic in ltrate

––Immunohistochemistry reveals CD68+, CD163+, S100+/−, factor XIIIa+, CD1a−, Langerin−, BRAF (VE1) V600E+/−

––Genetic analysis reveals

No mutation identi ed BRAFV600E mutation Other MAPK gene mutation

•\ Vigilance is required for atypical presentation

––ECD can occur in the absence of bone disease

––Characteristic xanthomatous histiocytes may be absent

––VE1 IHC positivity should be con rmed with a second molecular assay

––Negative BRAFV600E mutational testing should be con rmed with a second genetic modality or biopsy from more than one site

•\ Other recommended studies

––Chest CT

––Pulmonary function testing

––Bone imaging

––Whole body PET/CT including distal extremities

––CBC, complete metabolic pro le

––Bone marrow aspiration/biopsy

––Echocardiogram/right heart catheterization

––Endocrine studies for pituitary involvement

––MRI brain/pituitary/spine/sella turcica with contrast

––CT sinuses with contrast

RDD

•\ Biopsy strongly recommended

––Histology reveals histiocytes with round nuclei, central nucleoli, emperipolesis, plasmacytosis

––Immunohistochemistry reveals S100+, CD68+, CD163+, cyclin D1+/−, CD1a−, Langerin−

•\ Other recommended studies, as appropriate

––HRCT

––Whole body PET/CT

––CT sinuses, MRI orbit/brain/spine

––CBC with differential

––ALPS panel, ANA, RF, HLA-B27, IgG

––Pulmonary function tests

––Evaluation for anemia if present

––NGS of lesional tissue for MAPK pathway mutations

––If familial RDD is suspected, obtain SLC29A3

––Bone marrow aspiration/biopsy should be considered

Acknowledgments  We thank Ava Borchers for assistance with Fig. 16.1 graphics.

References

1.\Goyal G, Heaney ML, Collin M, Cohen-Aubart F, Vaglio A, Durham BH, et al. Erdheim-Chester disease: consensus recommendations for evaluation, diagnosis, and treatment in the molecular era. Blood. 2020;135(22):1929–45. https://doi.org/10.1182/ blood.2019003507.

2.\Abla O, Jacobsen E, Picarsic J, Krenova Z, Jaffe R, Emile JF, et al. Consensus recommendations for the diagnosis and

clinical

management of Rosai-Dorfman-Destombes dis-

ease.

Blood. 2018;131(26):2877–90. https://doi.org/10.1182/

blood-2018-03-839753.

3.\Allen CE, Merad M, McClain KL. Langerhans-cell histiocytosis. N Engl J Med. 2018;379(9):856–68. https://doi.org/10.1056/ NEJMra1607548.

4.\Goyal G,Young JR, Koster MJ, Tobin WO, Vassallo R, Ryu JH, et al. The Mayo Clinic Histiocytosis Working Group consensus statement for the diagnosis and evaluation of adult patients with histiocytic neoplasms: Erdheim-Chester disease, Langerhans cell histiocytosis,

Данная книга находится в списке для перевода на русский язык сайта https://meduniver.com/

16  Primary Histiocytic Disorders of the Lung

273

 

 

and Rosai-Dorfman disease. Mayo Clin Proc. 2019;94(10):2054– 71. https://doi.org/10.1016/j.mayocp.2019.02.023.

5.\Durham BH, Lopez Rodrigo E, Picarsic J, Abramson D, Rotemberg V, De Munck S, et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat Med. 2019;25(12):1839–42. https://doi.org/10.1038/s41591-019-0653-6.

6.\DeMartino E, Go RS, Vassallo R. Langerhans cell histiocytosis and other histiocytic diseases of the lung. Clin Chest Med. 2016;37(3):421–30. https://doi.org/10.1016/j.ccm.2016.04.005.

7.\Rao RN, Moran CA, Suster S. Histiocytic disorders of the lung. Adv Anat Pathol. 2010;17:12–22. https://doi.org/10.1097/ PAP.0b013e3181c6a524.

8.\Hogstad B, Berres ML, Chakraborty R, Tang J, Bigenwald C, Serasinghe M, et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med. 2018;215(1):319–36. https://doi.org/10.1084/jem.20161881.

9.\Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. https://doi.org/10.1038/sj.cr.7290105.

10.\Munoz J, Janku F, Cohen PR, Kurzrock R. Erdheim-Chester disease: characteristics and management. Mayo Clin Proc. 2014;89(7):985– 96. https://doi.org/10.1016/j.mayocp.2014.01.023.

11.\Gallego CT, Bueno J, Cruces E, Stelow EB, Mancheno N, Flors L. Pulmonary histiocytosis: beyond Langerhans cell histiocytosis related to smoking. Radiologia. 2019;61(3):215–24. https://doi. org/10.1016/j.rx.2018.11.003.

12.\Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 2012;209(6):1167–81. https://doi.org/10.1084/

jem.20120340.

 

13.\Hutter C, Kauer M, Simonitsch-Klupp

I, Jug G, Schwentner

R, Leitner J, et al. Notch is active in Langerhans cell histiocy-

tosis and confers pathognomonic features on dendritic cells.

Blood.

2012;120(26):5199–208.

https://doi.org/10.1182/

blood-2012-02-410241.

14.\Allen CE, Li L, Peters TL, Leung HC, Yu A, Man TK, et al. Cell-­ speci c gene expression in Langerhans cell histiocytosis lesions reveals a distinct pro le compared with epidermal Langerhans cells. J Immunol. 2010;184(8):4557–67. https://doi.org/10.4049/ jimmunol.0902336.

15.\Annels NE, Da Costa CE, Prins FA, Willemze A, Hogendoorn PC, Egeler RM. Aberrant chemokine receptor expression and chemokine production by Langerhans cells underlies the pathogenesis of Langerhans cell histiocytosis. J Exp Med. 2003;197(10):1385–90. https://doi.org/10.1084/jem.20030137.

16.\Xiao Y, van Halteren AGS, Lei X, Borst J, Steenwijk E, de Wit T, et al. Bone marrow-derived myeloid progenitors as driver mutation carriers in highand low-risk Langerhans cell histiocytosis. Blood. 2020;136(19):2188–99. https://doi.org/10.1182/ blood.2020005209.

17.\Satpathy AT, Brown RA, Gomulia E, Briseno CG, Mumbach MR, Pan Z, et al. Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Mod Pathol. 2018;31(9):1479–86. https://doi.org/10.1038/ s41379-018-0052-4.

18.\Berres ML, Merad M, Allen CE. Progress in understanding the pathogenesis of Langerhans cell histiocytosis: back to Histiocytosis X? Br J Haematol. 2015;169(1):3–13. https://doi.org/10.1111/ bjh.13247.

19.\Yamaguchi M, Shiota T, Kobashi Y. Erdheim-Chester disease presenting with pneumothorax. Respiration. 2011;82(6):552–6. https://doi.org/10.1159/000329872.

20.\R. Nagarjun Rao M, FRCPath. Histiocytic disorders of the lung. Adv Anat Pathol. 2010;17(1):12–22.

21.\Cives M, Simone V, Rizzo FM, Dicuonzo F, Cristallo Lacalamita M, Ingravallo G, et al. Erdheim-Chester disease: a systematic review. Crit Rev Oncol Hematol. 2015;95(1):1–11. https://doi. org/10.1016/j.critrevonc.2015.02.004.

22.\Go RJ, Baiocchi R, Buhtoiarov I, Butler EB, Campbell PK, Coulter DW, Diamond E, Flagg A, Goodman AM, Goyal G, Gratzinger D, Hendrie PC, Higman M, Hogarty MD, Janki F, Karmali R, Morgan D, Raldow AC, Stefanovic A, Tantravahi SK, Walkovich K, Zhang L. National Comprehensive Cancer Network NCCN Clinical practice guidelines (NCCN guidelines); 2021.

23.\Arnaud L, Pierre I, Beigelman-Aubry C, Capron F, Brun AL, Rigolet A, et al. Pulmonary involvement in Erdheim-Chester disease: a single-center study of thirty-four patients and a review of the literature. Arthritis Rheum. 2010;62(11):3504–12. https://doi. org/10.1002/art.27672.

24.\Diamond EL, Durham BH, Ulaner GA, Drill E, Buthorn J, Ki M, et al. Ef cacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567(7749):521–4. https://doi.org/10.1038/ s41586-019-1012-y.

25.\Picarsic J, Jaffe R. Pathology of histiocytic disorders and neoplasms and related disorders. Cham: Springer International Publishing; 2017. p. 3–50.

26.\Garcia-Gomez FJ, Acevedo-Banez I, Martinez-Castillo R, Tirado-­ Hospital JL, Cuenca-Cuenca JI, Pachon-Garrudo VM, et al. The role of 18FDG, 18FDOPA PET/CT and 99mTc bone scintigraphy imaging in Erdheim-Chester disease. Eur J Radiol. 2015;84(8):1586–92. https://doi.org/10.1016/j.ejrad.2015.04.022.

27.\Mazor RD, Manevich-Mazor M, Shoenfeld Y. Erdheim-Chester disease: a comprehensive review of the literature. Orphanet J Rare Dis. 2013;8:137. https://doi.org/10.1186/1750-1172-8-137.

28.\Picarsic J, Pysher T, Zhou H, Fluchel M, Pettit T, Whitehead M, et al. BRAF V600E mutation in Juvenile Xanthogranuloma family neoplasms of the central nervous system (CNS-JXG): a revised diagnostic algorithm to include pediatric Erdheim-Chester disease. Acta Neuropathol Commun. 2019;7(1):168. https://doi. org/10.1186/s40478-019-0811-6.

29.\Techavichit P, Sosothikul D, Chaichana T, Teerapakpinyo C, Thorner PS, Shuangshoti S. BRAF V600E mutation in pediatric intracranial and cranial Juvenile Xanthogranuloma. Hum Pathol. 2017;69:118–22. https://doi.org/10.1016/j.humpath.2017.04.026.

30.\Lim KPH, Milne P, Poidinger M, Duan K, Lin H, McGovern N, et al. Circulating CD1c+ myeloid dendritic cells are potential precursors to LCH lesion CD1a+CD207+ cells. Blood Adv. 2020;4(1):87–99. https://doi.org/10.1182/bloodadvances.2019000488.

31.\Cangi MG, Biavasco R, Cavalli G, Grassini G, Dal-Cin E, Campochiaro C, et al. BRAFV600E-mutation is invariably present and associated to oncogene-induced senescence in Erdheim-­ Chester disease. Ann Rheum Dis. 2015;74(8):1596–602. https:// doi.org/10.1136/annrheumdis-2013-204924.

32.\Gianfreda D, Nicastro M, Galetti M, Alberici F, Corradi D, Becchi G, et al. Sirolimus plus prednisone for Erdheim-Chester disease: an open-label trial. Blood. 2015;126(10):1163–71. https://doi. org/10.1182/blood-2015-01-620377.

33.\Pegoraro F, Papo M, Maniscalco V, Charlotte F, Haroche J, Vaglio A. Erdheim-Chester disease: a rapidly evolving disease model. Leukemia. 2020;34(11):2840–57. https://doi.org/10.1038/ s41375-020-0944-4.

34.\Moyon Q, Boussouar S, Maksud P, Emile JF, Charlotte F, Aladjidi N, et al. Lung involvement in Destombes-Rosai-Dorfman disease: clinical and radiological features and response to the MEK inhibitor cobimetinib. Chest. 2020;157(2):323–33. https://doi.org/10.1016/j. chest.2019.09.036.

35.\Garces S, Medeiros LJ, Patel KP, Li S, Pina-Oviedo S, Li J, et al. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod Pathol. 2017;30(10):1367–77. https://doi.org/10.1038/modpathol.2017.55.

274

M. Dalton et al.

 

 

36.\Garces S, Yin CC, Patel KP, Khoury JD, Manning JT Jr, Li S, et al. Focal Rosai-Dorfman disease coexisting with lymphoma in the same anatomic site: a localized histiocytic proliferation associated with MAPK/ERK pathway activation. Mod Pathol. 2019;32(1):16– 26. https://doi.org/10.1038/s41379-018-0152-1.

37.\Baraban E, Sadigh S, Rosenbaum J, Van Arnam J, Bogusz AM, Mehr C, et al. Cyclin D1 expression and novel mutational ndings in Rosai-Dorfman disease. Br J Haematol. 2019;186(6):837–44. https://doi.org/10.1111/bjh.16006.

38.\Mastropolo R, Close A, Allen SW, McClain KL, Maurer S, Picarsic J. BRAF-V600E-mutated Rosai-Dorfman-Destombes disease and Langerhans cell histiocytosis with response to BRAF inhibi-

tor. Blood Adv. 2019;3(12):1848–53. https://doi.org/10.1182/ bloodadvances.2019000093.

39.\Ravindran A, Goyal G, Go RS, Rech KL, Mayo Clinic Histiocytosis Working Group. Rosai-Dorfman disease displays a unique monocyte-­macrophage phenotype characterized by expression of OCT2. Am J Surg Pathol. 2021;45(1):35–44. https://doi. org/10.1097/PAS.0000000000001617.

40.\Cartin-Ceba R, Golbin JM, Yi ES, Prakash UB, Vassallo R. Intrathoracic manifestations of Rosai-Dorfman disease. Respir Med. 2010;104(9):1344–9. https://doi.org/10.1016/j. rmed.2010.03.024.

Данная книга находится в списке для перевода на русский язык сайта https://meduniver.com/

Part IV Lung-Dominant or -Limited Orphan Diseases