Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.Ф.Черняев. РУССКАЯ МЕХАНИКА.doc
Скачиваний:
88
Добавлен:
02.11.2018
Размер:
3.97 Mб
Скачать

6.4. Элементы самодвижения

космических тел

Если рассматривать движение тел в плотном вещест­венном пространстве, то сразу же возникает вопрос о том, как твердое тело движется в веществе без замет­ного изменения скорости своего движения. Иначе гово­ря: Почему вещество пространства не тормозит его движения? Ответа на этот вопрос еще не найдено. Более того, поскольку космическое пространство, по совре­менным представлениям, является пустым объемом, за­полненным флуктуациями электромагнитных полей, то и сопротивления движению тел в нем ничто не оказыва­ет, а следовательно, и вопроса не возникает и искать не­чего. Но эта наивная точка зрения постепенно утрачива­ется и до конца не исчезла именно потому, что неизвестен механизм, обеспечивающий движение вещест­ва в веществе без сопротивления данному движению.

Признание самопульсации тел и наличия вокруг них эфирных глобул позволяет выдвинуть гипотезу меха­низма взаимодействия планет, и в принципе подойти к решению этой задачи на примере движения планет во­круг Солнца. Механизм этот далее будет качественно изложен. Сейчас же еще раз отмечу, что существование вокруг Солнца и планет эфирных глобул, имеющих (ес­ли рассматривать с позиций классической механики) для каждой пары планета-Солнце одинаковую массу и объ­ем, но разную величину массы собственного тела, вы­глядит для физиков весьма необычно. Еще необычнее то, что эти небесные тела имеют разную величину заря­да и, в полном соответствии с электродинамикой, разные знаки.

Существование глобул, движущихся вместе с плане­той вокруг Солнца и имеющих гигантские по сравнению с планетами объемы, но намного меньшие количествен­ные величины масс и других параметров, чем тела самих планет, обусловливает необходимость рассмотрения элементов, движения планет и механики ее взаимодейст­вия с другими телами иначе, чем это трактуется совре­менной механикой. Возникает целый ряд вопросов, связанных с таким движением. Например: тело планеты движется по орбите вместе с глобулой и находится внутри ее. Следовательно, относительно вещественного пространства глобулы оно неподвижна, а перемещение динамического объема глобулы «определяется» взаимо­действием «границ» ее плотности с плотностью окру­жающего пространства. А где эта граница? Если исхо­дить из инварианта (6.1) распределения пространствен­ной плотности эфира, то граница глобулы между Солнцем и Землей определяется сравнительно легко. Она, похоже, находится на половине расстояния между ними 1/2 = 7,48·1012 см там, где плотности эфира от Солнца и Земли оказываются одинаковыми.

Однако в сторону, противоположную от Солнца» так же как и по траектории орбиты Земли со стороны, про­тивоположной ее движению, эта граница как бы рас­плывается. В направлении же движения Земли граница глобулы должна быть четко выраженной. Это происхо­дит потому, что движущийся с глобулой эфир «смина­ет» вдоль орбиты «неподвижный» эфир солнечной гло­булы.; В результате «смятия» на орбите впереди планеты возникает эфирная ударная волна, резко отграни­чивающая движущуюся глобулу от «неподвижного» эфира. Фактор образования ударной эфирной волны впереди движущегося тела, видимо, выполняет главную роль в обеспечении его движения. Прежде чем рассмат­ривать этот фактор, отметим еще раз, что движение есть следствие направленной пульсации тела. Или ина­че — процесс движения есть следствие волнового взаи­модействия тела с пространством и в направлении движения, и в противопо-ложном направлении.

Волновое взаимодействие, в свою очередь, предпола­гает, что во всех направлениях и в первую очередь в на­правлении движения тела волна от него движется бы­стрее, чем само тело: И быстрее намного. Вот этот-то фактор движения волны в эфире на сегодня и не фикси­руется ни эмпирически, ни теоретически. Посмотрим, существует ли возможность определения скорости эфирной волны, например, от Земли в направлении ее движения по орбите.

Ранее было предположено, что граница глобулы нахо­дится от планеты на расстоянии, равном расстоянию от центра Земли до центра Солнца. Учитывая, что глобула движется как единое тело с плотностью, уменьшающей­ся к границам, а скорость ее движения такая же, как и у Земли, то и скорость движения эфирных волн от по­верхности к границам должна уменьшаться пропорцио­нально плотности. То есть скорость движения волн определякется плотностью вещественного пространства, сквозь которое проходит волна. Это предположение подтверждается инвариантом зависимости скорости волны v от плотности . Инвариант имеет следующий вид:

/v const. (6.7)

Покажу, что, не используя инварианта зависимости скорости от расстояния (2.29), можно по (6.7) опреде­лить скорость движения волны от центрального тела в любой области пространства, если в ней известна плотность . Зная скорость вращения гравиполя Солнца vc = 4,37·1О7 см/с и плотность у поверхности Солнца с = 4,067·10-7 г/см3, а также плотность в районе либрационной точки = 2,793·10-15 г/см3, можно определить орби­тальную скорость Земли. Подставляя в (6.7) числовое значение и v, определяем const:

/v7 = 4,067·10-7/(4,367·107)7 = 1,343·10-60. (6.8)

Подставляем в (6.8) величину и определяем орби­тальную скорость v1 глобулы Земли;

v1 = 7 (с /1,343·1060) = 2,979·106 см/с.

Результат в точности соответствует скорости движения Земли по орбите. Это соответствие можно считать доказательством зависимости скорости движения грави­тационных волн от плотности того пространства, по ко­торому они проходят. Исходя из этого определим, ис­пользуя инвариант (6.8), с какой скоростью v2 они начинают двигаться от Земли, зная, что плотность эфира у Земли 2 = 5,52 г/см3:

v2 = 7(2 /1,343·10-60) = 4,562·108 см/c.

Линейная скорость гравипульсации Земли оказывается на порядок больше линейной скорости гравиполя Солн­ца. Это кажется неправдоподобным, но именно в этом случае волна, двигаясь от Земли в глобуле, будет иметь скорость около 30 км/с на ее границе в либрационной точке. Чтобы убедиться в правильности полученного ре­зультата, найдем скорость v2 другим способом по инва­рианту (2.29) lv2 = const':

lv2 = l,496·1013(2,989·106)2 = l,336·1026. (6.9)

Подставляем в инвариант (6.9) величину радиуса Зем­ли:

v2 = v(1,336·1026/6,378·106 = 4,58·108 см/с.

Получаем ту же скорость 4,58·108 см/с. Эта скорость по порядку величины сопоставима со скоростью элек­тронов на внешних орбитах атомов (таблица 11). Учи­тывая эти пропорции, можно предположить, что движе­ние Земли на орбите обусловливает именно объемное интегрированное воздействие самопульсации ее молекул (атомов?), распространяющееся от поверхности во все стороны с начальной скоростью 4,562·108 см/с. Определим по инварианту (6.7) или (2.29), какую ли­нейную скорость гравиполя v2 имеют у своей поверхно­сти остальные планеты, и занесем эти параметры в таб­лицу 26 столбец 3. Отметим, что линейная скорость вращения гравитационного поля всех планет в пределах порядка одинакова и близка к тем скоростям, которые приборно регистрируются у электронов (отмечу, что мне еще не встречались в литературе случаи наблюде­ния у электронов скоростей меньше 107 см/сек; если они не регистрируются, то это может означать наличие при­родного ограничения на скорости, связанные со струк­турой атомов). Она в среднем на порядок превышает скорость вращения гравиполя у поверхности Солнца.

Таблица 26

v2 см/с

vгр см/с

v2/vrp

rj /lop

Рт

1

2

3

4

5

6

7

0

Солнце

4,367·107

4,18·1044

1

Меркурий

7,400·108

2,967·105

2494

4,188·10-5

4,06·1040

2

Венера

4,676·108

7,225·105

644,4

5,610·10-5

1,97·1041

3

Земля

4,562·108

7.910·105

576

4,263·10-5

2,24·1041

4

Марс

6,252·108

3,563·105

1754,5

1,489·10-5

6,30·1040

5

Юпитер

1,364·108

4,297·106

31,7

9,161·l0-5

7,47·1042

6

Сатурн

1,486·108

2,606·106

57,02

4,212·10-5

3,99 ·1042

7

Уран

2,327·108

1,596·106

145,8

8,539·10-6

1,42·1042

8

Нептун

2,299·108

1,874·106

122,6

5,581·10-6

3,55·1042

9

Плутон-

6,440·108

Из столбца 3 табл. 26 следует вывод о том, что линей­ная скорость вращения гравиполей тел, находящихся на орбитах вокруг Солнца, должна примерно на порядок превышать скорость вращения его гравиполя. И возни­кает вопрос: А сохраняется ли эта пропорция для спут­ников планет, особенно у тех из них, у которых размеры спутников имеют «солидный» разброс по величине ра­диуса. Рассчитаем скорости гравиполей v2 у поверхно­стей спутников Юпитера и занесем их в табл. 27.

Таблица 27

v2

rсп/lор

1

2

3

4

0

Юпитер

1,364·108

1

Амальтея

4,073·109

4,420·10-4

2

Ио

8,746·108

4,121·10-3

3

Европа

9,253·108

2,310·10-3

4

Ганнимед

7,286·108

2,336·10-3

5

Каллисто

7,515·108

1,248·10-3

6

Атлас

4,703·109

5,263·10-6

7

Прометей

1,487·1010

5,124·10-6

8

Геракл

8,139·109

1,709·10-6

9

Гефес

1,553·1010

2,657·10-7

10

Дедал

1,330·1010

3,355·10-7

11

Прозерпина

1,553·1010

2,300·10-7

12

Цербер

1,377·1010

2,953·10-7

Получается так, что линейная скорость вращения гравиполей малых спутников Юпитера приближается к скорости света, к скорости, которую электроны в естест­венных условиях достигают только внутри атомов и мо­лекул либо в искусственных условиях в синхрофазотро­не и, следовательно, надо ожидать, что и плотность пространства в камере синхрофазотрона соответствует плотности у поверхности этих «камешков»-спутников.

Отмечу, что интересная «случайность» (?) наблюдает­ся в отношении приповерхностной скорости вращения гравиполя Земли v'1 = 7,91·105 см/с к аналогичной элек­тромагнитной скорости ее же v2 = 4,562·108 см/с. Если вторую разделить на первую, то получим:

v2/v1' = 4,562·108/7,91·105 = 576.

Безразмерное число 576 можно записать в виде; 576 = 4/3, где ' = 137,5 > 137,04 всего на 0,3%. Если учесть, что постоянная тонкой структуры в кванто­вой механике и вспомнить, что 4  нижняя граница трехмерности, то это достаточно странное и вызываю­щее много вопросов совпадение. Но вернемся к Земле.

Попробуем промоделировать качественно, как «разбе­гаются» волны в пространстве от пульсирующей Земли. Отметим, что длина волны, амплитуда и частота, но не фаза, от Солнца и от Земли, полученные по инварианту (2.29) длины волн , будут иметь в либрационной точке одинаковую величину. По этому же инварианту длина волны и амплитуда от Солнца и Земли на середине рас­стояния между ними тоже оказываются одинаковой ве­личины. И чтобы Солнце и Земля не притягивали и не отталкивали друг друга, достаточно, чтобы их амплиту­ды совпадали по величине и фазе, но имели разный знак, т.е. силы F1 = F1' обусловленные волнами, взаимно по­гашались (рис. 71). Это обстоятельство и обеспечивает Земле устойчивое положение на орбите.

Рис. 71.

Волна, вызываемая самопульсацией Земли, объемна. Ее часть, идущая в сторону от Солнца (в направлении F3), будет давать Земле дополнительный импульс, «прижимая» ее к Солнцу. Такой же импульс она получа­ет и от волн, движущихся по направлению ее движения по орбите и против этого направления. То есть с двух сторон по орбите возникают одинаковые взаимопогашающие силы F2 = F4, и, следовательно, Земля тоже должна оставаться на месте.

Это в случае ее неподвиж­ности относительно Солнца. В случае ее движения энер­гия волн самопульсации по направлению движения боль­ше, чем поперек его. Но и в этом случае сила F1, обра­зуемая по направлению дви­жения, равна силе F4, на­правленной в противопо­ложную сторону. А потому кажется, даже без учета со­противления эфира, что пла­нета не может двигаться за счет отталкивания от про­странства. И все же она дви­жется. Более того, образует в направлении движения впереди «себя», как уже упоминалось, бегущую удар­ную сферическую волну, «сминающую» и уплотняю­щую эфирное пространство перед движущимся телом (Образуя своего рода сферическую стенку плотности). Похоже, что это «смятое» вещественное пространство и становится основным элементом, обеспечивающим движение небесного тела в пространстве. Плотность «ударной» волны оказывается такой величины, что становится непреодолимой для набегающей на нее от тела (Земли, в частности) электромагнитной волны самопульсации. Более того, набежавшая волна этой сферической стенкой полностью отражается и с «фо­кусировкой» «возвращается» в сторону Земли. Отра­женная волна с двойной силой воздействует на сфери­ческое «зеркало», уплотняя «тело» последней и обеспе­чивая ее дальнейшее, как бы независимое от планеты, движение (рис. 72).

В свою очередь отра­женная космическим «зер­калом» электромаг-нитная волна возвращается к телу (к поверхности Земли), имея те же параметры,что и движущаяся ей на­ встречу волна самопульса­ции. В результате на всем пространстве от «зерка­ла» до Земли образуются стоячие волны, обусловли­вающие притяжение Зем­ли к «зеркалу» и «зер- кала» к Земле. Сила F2 оказывается скомпенсированной этим притяжением

Рис. 72 и все образование  глобула вместе с планетой  движется под действием сил F4 и F2 по орбите вокруг Солнца, Об­разуется совершенно необычная природная конструк­ция типа тяни-толкай, в которой компенсация одного волнового усилия обеспечивает превращение отталки­вающей силы в силу толкающую. Вот почему, по-видимому, вещественное пространство не тормозит са­модвижение тел в своей среде. На рис. 72 изображена примерная схема появления эфирного «зеркала» перед движущейся планетой.

Поскольку нам неизвестны параметры сжатия и раз­ряжения движущейся волны, а известно только измене­ние плотности пространства Солнечной системы, попробуем, ориентируясь на эти изменения, определить приблизительную картину взаимодействия и место воз­можного образования эфирного «зеркала», например, для нашей планеты. Прежде всего отметим, что зона одинаковой плотности эфирного пространства от Солн­ца и Земли, при положении последней в точке А, прохо­дит по линии BE, причем ОВ = ВА. При движении пла­неты по орбите дуга ВСД перемещается пропорцио­нально изменению угла ВОВ', но не пропорционально плотности пространства. Похоже, что именно эта дуга и образует сферическое эфирное «зеркало». Параметры «зеркала» определяются изменением плотности от нее до планеты. И вогнутая сфера ударной плотности долж­на отстоять всеми своими точками на таком расстоянии от поверхности планеты, которое обеспечивает одина­ковое количественное изменение скорости и параметров волн как при движении их от планеты, так и в обратном направлении. Отмечу, что процесс движения электриче­ских волн по направлению и против направления полета планеты по орбите в значительной степени определяется эффектом Доплера.

По-видимому, данный механизм обеспечивает движе­ние всех тел от элементарных частиц до галактик и да­лее как вглубь, так и наружу, а также тел, обретающих движение в результате различных естественных или ис­кусственных процессов. Поэтому все тела движутся в пространстве по таким траекториям, которые обуслов­ливают им их энергетические возможности, проявляю­щиеся в параметрах самопульсации.

На сегодня никаких параметров «зеркала» от электро­магнитных волн от планет и изменения эфирной плот­ности пространства эмпирически не обнаружено, а тео­ретически их и не может быть. Однако некоторые косвенные достоверные данные свидетельствуют о су­ществовании «зеркала». Например, об этом свидетель­ствуют так называемые «скачкообразные» негравитаци­онные изменения кометных орбит, не имеющие естественного объяснения, или наблюдаемое иногда как бы беспричинное деление кометного ядра, и, наконец, конфигурация ядра кометы, светящаяся часть которой достигает сотен тысяч и даже миллионов километров (какова невидимая, уплотненная ударной волной часть пространства перед головой кометы, сказать, похоже, не­возможно).

Надо отметить еще одну возможность эксперимен­тального обнаружения эфирного «зеркала», образующе­гося по орбите перед планетой. Оно, это эфирное уплот­нение, является некоторым подобием гравитационной линзы, правда, достаточно слабой. И все же свет от звезд, проходящий через вогнутости «зеркала» вблизи касательной к уплотнению или через него, будет немно­го отклоняться от прямолинейного направления, «раз­двигая» или «сдвигая» изображения звезд на фотогра­фиях, по-видимому, в пределах 0,05-0,1%. Это, конечно, незначительные и достаточно незаметные отклонения, но все же их можно обнаружить современными фото­метрическими методами. Естественно, что наибольшее отклонение может наблюдаться при прохождении лучей через эфирное «зеркало» Меркурия или Венеры, по­скольку они имеют наибольшую орбитальную скорость да и плотность эфирного пространства в районе, напри­мер, орбиты Меркурия на порядок выше, чем даже на орбите Земли или Марса (табл. 21).