Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
А.Ф.Черняев. РУССКАЯ МЕХАНИКА.doc
Скачиваний:
88
Добавлен:
02.11.2018
Размер:
3.97 Mб
Скачать

2.11. Экспериментальное нахождение

гравитационной «постоянной»

Вопрос об экспериментальном нахождении гравитационной «постоянной» G возник сразу же после того, как И. Ньютон нашел закон всемирного тяготения:

F = GMm/R2, (2.51)

где F – сила притяжения между телами, G – гравитационная «постоянная», M и m – массы тел, а R – расстояние между центрами масс.

Отметим, что сам И. Ньютон не считал параметр G величиной постоянной [2]. Параметр G вводился им в качестве гравитационного коэффициента, физическую сущность которого еще необходимо было выяснить. И в этом особенно проявился гений И. Ньютона.

Первым, кому удалось эмпирически получить в 1798 году количественную величину G, был английский ученый Г. Кавендиш. Опираясь на закон тяготения, все параметры которого постулируются неизменными, ему предстояло найти способ экспериментального выделения свойства G из них, таким образом, чтобы на тело, подвергаемое эксперименту, не действовала сила притяжения к Земле. Т.е. сделать так, чтобы параметру G обеспечивалась независимость (?? - А.Ч.) внешнего гравитационного поля. И Кавендиш нашел решение задачи, сконструировав крутильные весы, на которых взаимодействовали между собой два груза, находясь под одинаковым воздействием гравиполя Земли, и тем самым воздействие гравиполя для них как бы исключалось. После получения количественной величины G = 6,67·10-8 см3/гс2, последователи И. Ньютона, постулировали ее постоянной величиной.

Понятие «гравитационная постоянная»  логически не однозначное понятие. За этой формулировкой могут скрываться как минимум три различных подхода к ее количественной значимости:

1. — это одинаковая по количественной величине G для всех тел.

2. — это различная количественная величина G для всех тел, не изменяющаяся во времени (абсолютная во времени) и зависящая от их размеров. Такое возможно в том случае, если сила притяжения тел к Земле постоянна во времени.

3. — это различная для всех тел по количественной величине еще неизвестная гравитационная характеристика (степень удельного гравитационного заряда, например), изменяющаяся во времени и зависящая от их размеров.

Третий подход ставит под сомнение корректность формализации закона притяжения (2.51), поскольку в нем появляется скрытый параметр  неизвестная гравитационная характеристика (удельные гравитационные заряды) взаимодействующих тел.

Из различного определении понятия «гравитационная постоянная» следовало, что для нахождения количественной величины G можно использовать различные экспериментальные методы. Поскольку, как уже говорилось, классическая механика предполагает неизменность во времени напряженности гравитационного поля планеты, а, следовательно, и силы притяжения тел ею, то была выбрана одна формулировка (одинаковая количественная величина коэффициента G для всех тел). А потому единственным способом экспериментального определения количественной величины G становился способ, предложенный Кавендишем.

Однако многочисленные, тщательно выполненные эксперименты, проведенные со времен Кавендиша до настоящего времени по нахождению количественной величины гравитационной «постоянной», практически не улучшили результатов им полученных. И на сегодня она известна с точностью до трех знаков G = (6,672±0,004)·10-11 Н·м2/кг2 [2]. Низкая точность нахождения важнейшего физического параметра требует анализа порождающих ее физических причин.

Неоднозначность понятия G в свое время не проверялась экспериментально, и может, по мнению авторов, оказаться причиной низкой точности результатов экспериментов. Другая причина  возможное изменение напряженности гравиполя планеты во времени, тоже не прошедшее экспериментальной проверки. Остановимся на них подробнее.

Предположим, основываясь на третьем подходе, что каждое тело, включая небесные тела, имеет собственный удельный гравитационный заряд (еще неизвестная гравитационная характеристика). Тогда гравитационный коэффициент G (применим, вслед за И. Ньютоном, это название) оказывается произведением различных по величине удельных гравитационных зарядов взаимодействующих тел. И как произведение не одинаковых зарядов взаимодействующих тел может в каждом случае иметь различную величину. Введем этот коэффициент как удельный гравитационный заряд, обозначив индексом з (заряд), тогда уравнение (2.51) приобретет следующий вид:

F = Mзmз1/R2, (2.52)

где:

з·з1 = G, (2.53)

и уравнение (2.52) становится полным аналогом закона Кулона. Но закон Кулона описывает взаимодействие равновеликих электронов е1 и е2; е1 = е2, каждый из которых есть произведение удельного электрического заряда j на его массу mе:

j·mе = е,

и по аналогии должно иметь место:

з1m = Э1, (2.54)

где Э1 – обозначает тело, как гравитационный электрон. Но в уравнении (2.53) произведения:

зМ ≠ з1m, (2.55)

не равны между собой, и при таком раскладе уравнение (2.52) становится бессмысленным, поскольку массы Земли и тела в нем несопоставимы и электрическая двойственность в притяжение тел как бы отсутствует. Но не будем спешить и отметим, что неоднозначность понятия G, в классическом понимании, обусловливает возможность достаточно простой эксперимен-тальной проверки правильности и (2.53), и (2.54), и (2.55) по меньшей мере, двумя способами. Опишем их:

• Первый эксперимент: возьмем несколько различных тел и ежедневно, примерно в одно и тоже время, будем взвешивать их на весах с точностью пять — шесть знаков в продолжении как минимум полугодия. Если вес тел за это время остается неизменным, то напряженность гравиполя планеты не меняется и вместе с ней не меняется и G. Если вес тел меняется в одинаковой пропорции, то меняется напряженность гравиполя Земли, но величина G остается неизменной. Если же вес тел меняется в различной пропорции (пусть даже в пятом — шестом знаке), это является следствием изменения и напряженности гравиполя Земли, и различной величины зарядов у каждого тела, и коэффициента G.

• Второй эксперимент практически повторяет первый: взять несколько пар различных тел в такой пропорции, чтобы тела из одного материала различались по весу на полтора-два порядка, и взвешивать их в течение того же времени. Если величина гравитационного заряда каждого тела зависит и от его свойств (например, от объема), то величина заряда у тел из одного материала неодинакового объема тоже будет меняться на разную величину (где-то в седьмом, восьмом знаке) что и обусловит изменение G.

Поскольку эмпирическая суть идеи достаточно проста, то для ее выяснения в НПО «Квант-Элемет» был поставлен эксперимент по длительному ежедневному (кроме выходных дней) наблюдению за изменением веса четырех твердых тел из не намагничивающихся материалов во времени (т.е. по третьему варианту) на лабораторных весах марки ВЛ-500, обеспечи-вающих точность взвешивания в пять знаков (два знака после запятой). Естественно, что до проведения эксперимента отсутствовало представление о том, будет ли изменяться вес тел, каков характер этого изменения, его порядок, продолжитель-ность, корреляция по отношению к возможному изменению гравиполя планеты и т.д. На начало эксперимента, образцы имели следующие параметры (таблица 7):

Таблица 7.

№ п⁄п

Материалы

Размер мм

Р, гр.

1

2

3

4

1

Дубовый брусок

95х50х23

103,02

2

Брусок из полимера

95х50х23

128,51

3

Брусок дюралевый

74х48х21

195,79

4

Свинцовый цилиндр

70; ø20

202,73

Достижение высокой точности измерения не предполагалось. Целью эксперимента было: в течение годового периода времени определить экспериментально на качественном уровне: изменяется ли вес указанных тел, тенденцию и примерный порядок этого изменения, если оно имеется.

Эксперимент продолжался в течение двух лет, и результаты оказались в полном соответствии с предположениями, высказан-ными в варианте третьего подхода. Количественные величины изменения веса отображены в таблице 8.

Таблица 8

Размер

Макс.

Миним.

п⁄п

Материалы

мм

Р, гр.

Р, гр.

Р, гр.

1

2

3

4

5

7

1

Дубовый брусок

95х50х23

104,89

98,26

6,63

2

Брусок из полимера

95х50х23

128,79

127,78

1,01

3

Брусок дюралевый

74х48х21

196,07

19501

1,06

4

Свинцовый цилиндр

70; ø20

203,1

202,07

1,03

Вес всех тел (а, следовательно и их масс) изменялся во времени в различных пропорциях, что с одной стороны свидетельствует об изменении напряженности гравиполя Земли, а с другой о том, что каждое тело имеет изменяемый по величине и во времени удельный гравитационный заряд, и, следовательно, величина G не является постоянной величиной (что она систематически и демонстрирует).

Следует отметить не мгновенную реакцию тел на изменение внешнего гравиполя. Наблюдается неодновременное начало изменения веса различных тел. Создается впечатление, что неодновременность, в какой то мере связана с плотностью тел. Бывают моменты, когда вес, например, свинца или дюраля еще возрастает, а дерева или оргстекла уже уменьшается. И только через день или два плотность их тоже начинает изменяться. Случается и наоборот.

Выяснилось еще одно очень важное обстоятельство: диаграмма изменения веса как бы дрейфовала на графике, отображая место нахождения Земли на орбите (т.е. по изменению веса тел в течение года еще во времена И. Ньютона можно было приблизительно отслеживать орбитальное движение планеты, не заглядывая при этом на небо). А, следовательно, изменение напряженности гравиполя Земли напрямую связано с изменением гравиполя той области Солнечной системы, в которой находится планета.

Таким образом, результаты экспериментов по определению изменения веса тел во времени показали нестабильность гравиполя Земли, и ее влияние на изменяемость веса тел, как во времени, так и в пропорциональном отношении. А это свидетельствует о том, что величина G не является гравитационной постоянной, и более того — она является «составной», как это показано в (2.53), и включает в себя удельные гравитационные заряды Земли и притягиваемого тела. И, следовательно, уравнения (2.52)-(2.55) имеют право на существование.

Метод прямого взвешивания тел во времени позволяет непосредственно определять величину гравитационного коэффициента G и проводить наблюдения его дрейфа, обусловленного изменением веса тел. На графиках 1 и 2 отображено изменение коэффициента G по каждому телу в течение трех месяцев, приведенное на 01.02. 2006 к величине 6,67323·10-11 Н·м2/кг2. График 1 отображает изменение коэффициента деревянного бруска – Gдер., бруска из оргстекла – Gорг., график 2 – бруска из дюраля – Gдюр., и свинцового цилиндра – Gсвин. Диаграммы изменения гравитационного коэффициента показывают, что каждое тело, гравитационно взаимодействующее с планетой

График 1.

обусловливает свою количественную величину G, дрейфующую во времени. Ежедневное изменение G практически не выходит за пределы четвертого знака и не хаотично. G дрейфует у дерева и оргстекла в более широких пределах, чем у дюраля и свинца. Траектория дрейфа отображает траекторию движение планеты по орбите и возмущения, от действия других тел Солнечной системы, достигая экстремального значения в районах афелия и перигелия.

График 2.

Использования метода изменения веса во времени позволяет получать более точные значения G для тела из любого материала, что невозможно методом Кавендиша. Эта невозможность — следствие конструктивных особенностей крутильных весов.

Поскольку напряженность гравиполя Земли во времени меняется, то происходит неодновременное изменение масс взаимодействующих тел, сопровождаемое изменением силы их взаимного притяжения. Перемещение эталонных тел на крутильных весах (при использование рычажных весов с регулируемым плечом) может резко и значительно изменять результаты замеров гравитационной «постоянной» и потому последствия исследований гравитационного коэффициента с применением крутильных весов не однозначны. Похоже это основная причина низкой точности экспериментального нахождения коэффициента G.

Чтобы разобраться с этим явлением рассмотрим схематично конструкцию крутильных весов и что происходит с пробными телами, когда напряженность внешнего гравиполя меняется или меняется расстояние между ними?

Простые крутильные весы представляют собой коромысло, подвешенное на упругой нити за центр. К концам коромысла закрепляются или подвешиваются, два пробных тела (в виде шариков), из одного и того же материала. Напротив их на определенном расстоянии (иногда изменяемом) располагают два эталонных массивных шара, которые притягивают пробные шарики, закручивая нить. Когда пробные шарики стабилизи-руются, эталонные шары убираются, нить раскручивается и по углу раскручивания определяется сила, с которой отклонилось коромысло. А дальше производится расчет по закону И. Ньютона

Отметим главный недостаток этого способа: Это опосредственный способ нахождения G. Он скрывает воздействие на эталонные и пробные тела изменяющейся напряженности гравитационного поля. И поэтому крутильные весы слабо отслеживают изменения внешней напряженности, а удаление эталонного тел или их перемещение обусловливают возможность последующего случайного и не пропорционального изменения взаимодействия, поскольку эффект взаимодействия исчезает не сразу. А поскольку масса эталонных тел во многие сотни раз превышает массу пробных и плотность пробных тел, под воздействием гравиполя планеты, изменяется быстрее плотности эталонных, то итогом таких исследований может стать соответствующее (практически ежедневное) изменение величины гравитационного коэффициента в четвертом или даже в третьем знаке.

Значительное влияние на показания весов оказывает и перемещение масс вблизи весов, и в первую очередь экспериментатора. Его масса, более чем на порядок превышающая эталонные массы, оказывает влияние на показание весов даже тогда, когда экспериментатор находится от них на расстоянии нескольких метров.

Когда же, для ускорения эксперимента, начинают несколько раз в день передвигать эталонные тела то, приближая то, удаляя их от тел пробных, гравитационный коэффициент начинает меняться чуть ли не каждое передвижение и подчастую в третьем знаке. Естественно, что свойства Земли в таком режиме меняться не могут и поэтому исследованиям, в которых почти ежедневно у гравитационной переменной меняется четвертый, а то и третий знак доверять сложно.

Похоже, единственным способом измерения гравитацион-ного коэффициента, пожалуй, правильнее сказать гравитационного свойства, является метод прямого взвешивания во времени. Когда тело взаимодействует только с Землей, изменение его веса (масы) отслеживает аналогичное изменение притяжения Земли и на этот процесс не могут оказывать влияния никакие посторонние массы. Именно этим способом производились взвешивание четырех пробных тел.

Рассмотрим, к примеру, «результаты измерения гравитационной постоянной на установке с крутильными весами», полученные группой О. Карагиоза за период с 4 декабря 1990 года по 23 декабря 1991 года [41]. В исследование, как следует из описания, использовался опыт ранее проведенных экспериментов по определению гравитационной «постоянной». Описание исследования содержит результаты измерений, которые можно сопоставить с результатами, полученными при взвешивании четырех тел. Других же подробных аналогичных исследований, проведенных в последнее время, обнаружить не удалось. Но это не существенно, поскольку ошибки в предшествующих наблюдениях с использованием крутильных весов достаточно стандартны. Для уменьшения объема работ используем материалы исследования за февраль-апрель 1991 года, поскольку последующие данные (до сентября) не очень отличаются от результатов этого месяца. Приведем описание постановки эксперимента из работы [41]:

«Эксперименты по определению гравитационной постоянной G в настоящее время достигли высокого совершенства. Не смотря на это за последние несколько десятилетий не удалось достичь существенного прогресса в повышении точности. В наиболее тщательно выполненных за последние годы экспериментах погрешность определения G составляет примерно величину 1·10-4. Столь низкая точность определений важнейшей физической константы не может удовлетворять потребности современной физической науки.

Отсутствие прогресса в повышении точности измерения при техническом совершенствовании экспериментальных установок ставит вопрос о наличии какого-то внешнего, ускользающего от внимания экспериментаторов фактора, влияющего на результаты измерений (здесь авторы исследовании совершенно правы – Авт.). Выяснение природы этого фактора может способствовать прослеживанию величины флуктуаций результатов измерений величины G на длительных отрезках времени с целью выявления ритмов или каких-либо других закономерностей.

Такие исследования проведены на установке с крутильными весами. …

Определение G осуществляется по величине периода колебания коромысла с закрепленными на его концах пробными массами (около 1,5 г), подвешенного на тонкой нити в вакуумной камере. Вне этой камеры располагаются эталонные массы – шары весом около 4 кг. (Итого вес эталонных тел превышают вес пробных почти в три тысячи раз – А.Ч.) Период колебания коромысла – около получаса.

В настоящем отчете анализируются результаты, полученные с декабря 1990 г. по декабрь 1991 г. в ходе практически непрерывных измерений. С 4.12.90 по 27.12.91 установка работала в режиме попеременного измерения G при трех положениях эталонных масс, когда минимальное расстояние R между центрами эталонных и пробных масс составляли 6,64, 9,43, 19,33 см (курсив наш – Авт.). Величина G определялась в результате обработки методом наименьших квадратов данных, полученных на этих трех расстояниях».

Описание крутильных весов, используемых исследователями, показывает, что они выполнены по стандартной методике. Т.е. изложенные выше нюансы изменения напряженности гравитационного поля Земли не принимаются во внимание. Поэтому следует ожидать, что результаты экспериментов будут достаточно хаотичны. Построим график 3 отображающий изменение гравитационной переменной полученный на крутильных весах за февраль 1991 года (диаграмма G) и на обычных за февраль 2006 г. (диаграмма G1).

Диаграмма G графика 3 фиксирует почти ежедневное хаотичное изменение четвертого знака (1·10-4). А диапазон изменений лежит в пределах третьего знака. Естественно, что при усреднении диапазон изменений передвинется на четвертый, а возможно и на пятый знак. Никакого изменения напряжения гравиполя планеты не отслеживается. Его забивает хаос случайных взаимодействий вызванных вариациями пробных масс и передвижений экспериментаторов.

График 3.

Структура диаграммы G1, полученная по результатам завешивания свинцового цилиндра в феврале 2006, совершенно другая. Расчет величины G1 производился аналогично методу использованному О. Карагиозом. Никакого усреднения результатов не производилось. Коэффициент G1 хотя и включает две величины, зз и зт здесь рассматривается в классическом понимании:

G1= зз·зт,

где зз – гравитационный коэффициент Земли, а зт – гравитационный коэффициент тела.

На диаграмме G1 графика 3 хаотичность исчезла, появилось достаточно медленное, последовательное изменение гравитационного коэффициента  дрейф, несколько напоминающей синусоиду. Диапазон изменений G1, продолжающийся до конца месяца, изо дня в день не выходит за пределы четвертого знака. И только в конце месяца начинаются дрейфовые отклонения в четвертом знаке.

Но вот с сентября группа О. Карагиоза стала проводить эксперименты при неизменном положении эталонной массы, и картина взаимодействий значительно изменилась (октябрь, график 4). По первым замерам появился дрейф диаграммы G, но не уменьшения, как на весах (диаграмма G2), а возрастания гравитационного коэффициента. Динамику последующих замеров частично

График 4.

отображает диаграмма G1 (тоже хаотичная). Вырежем из графика 9 диаграммы G и G2 и сопоставим их на графике 10.

График 5.

Дрейф диаграмм G и G2 , как следует из графика 5, происходил в противоположных направлениях и отклонения за месяц составили примерно одну и ту же величину. А, следовательно, и на крутильных весах можно отслеживать изменение веса тел во времени.

Вывод: Гравитационная «постоянная» имеет различную количественную величину для всех тел и изменяется с изменением гравитационного поля Земли.